Consider the arithmetic sequence \( 12: 8 ; 4 ; \ldots \) (1) Calculate \( T_{23} \). (2) Determine the value of \( k \) if \( T_{2}=-168 \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find \( T_{23} \) for the sequence \( 12, 8, 4, \ldots \), we first identify the first term \( a = 12 \) and the common difference \( d = 8 - 12 = -4 \). The formula for the \( n \)-th term of an arithmetic sequence is: \[ T_n = a + (n-1)d \] Substituting in for \( n = 23 \): \[ T_{23} = 12 + (23-1)(-4) = 12 + 22 \times -4 = 12 - 88 = -76 \] So, \( T_{23} = -76 \). For part (2), we need to find \( k \) such that \( T_2 = -168 \). Using the same sequence parameters, we calculate \( T_2 \): \[ T_2 = a + (2-1)d = 12 + 1 \times -4 = 12 - 4 = 8 \] Since \( T_2 \) is given as \( -168 \), we must equate \( T_2 \) to this value and solve for \( k \) in the adjusted sequence defined by other terms: Assuming that the sequence depends on \( k \), if \( T_n = 12 - 4(n-1) + k \), therefore, \[ -168 = 12 - 4 \cdot 1 + k \] \[ -168 = 12 - 4 + k \] \[ -168 = 8 + k \] \[ k = -168 - 8 = -176 \] Thus, \( k = -176 \).