Pregunta
upstudy study bank question image url

Consider the arithmetic sequence \( 12: 8 ; 4 ; \ldots \) (1) Calculate \( T_{23} \). (2) Determine the value of \( k \) if \( T_{2}=-168 \)

Ask by Park Ramos. in South Africa
Jan 20,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( T_{23} = -76 \) and \( k = -180 \).

Solución

Let's analyze the given arithmetic sequence and solve both parts step by step. ### Understanding the Sequence An **arithmetic sequence** is a sequence of numbers in which the difference between consecutive terms is constant. This constant difference is known as the **common difference** (\( d \)). The given sequence is: \[ 12, \, 8, \, 4, \, \ldots \] From this, we can identify: - **First term (\( a \))**: \( 12 \) - **Second term**: \( 8 \) - **Third term**: \( 4 \) ### Finding the Common Difference (\( d \)) \[ d = \text{Second term} - \text{First term} = 8 - 12 = -4 \] Thus, the common difference \( d = -4 \). ### (1) Calculating \( T_{23} \) The \( n \)-th term of an arithmetic sequence is given by: \[ T_n = a + (n - 1) \times d \] Substituting the known values: \[ T_{23} = 12 + (23 - 1) \times (-4) \] \[ T_{23} = 12 + 22 \times (-4) \] \[ T_{23} = 12 - 88 \] \[ T_{23} = -76 \] ### (2) Determining the Value of \( k \) if \( T_2 = -168 \) Assuming \( k \) represents the **common difference** in this part, we can set up the equation using the formula for the \( n \)-th term: \[ T_2 = a + (2 - 1) \times d = a + d \] Given: \[ T_2 = -168 \] \[ a = 12 \] Substitute the known values: \[ -168 = 12 + d \] \[ d = -168 - 12 \] \[ d = -180 \] Thus, the value of \( k \) (the common difference) is: \[ k = -180 \] ### Summary of Answers 1. **\( T_{23} = -76 \)** 2. **\( k = -180 \)**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find \( T_{23} \) for the sequence \( 12, 8, 4, \ldots \), we first identify the first term \( a = 12 \) and the common difference \( d = 8 - 12 = -4 \). The formula for the \( n \)-th term of an arithmetic sequence is: \[ T_n = a + (n-1)d \] Substituting in for \( n = 23 \): \[ T_{23} = 12 + (23-1)(-4) = 12 + 22 \times -4 = 12 - 88 = -76 \] So, \( T_{23} = -76 \). For part (2), we need to find \( k \) such that \( T_2 = -168 \). Using the same sequence parameters, we calculate \( T_2 \): \[ T_2 = a + (2-1)d = 12 + 1 \times -4 = 12 - 4 = 8 \] Since \( T_2 \) is given as \( -168 \), we must equate \( T_2 \) to this value and solve for \( k \) in the adjusted sequence defined by other terms: Assuming that the sequence depends on \( k \), if \( T_n = 12 - 4(n-1) + k \), therefore, \[ -168 = 12 - 4 \cdot 1 + k \] \[ -168 = 12 - 4 + k \] \[ -168 = 8 + k \] \[ k = -168 - 8 = -176 \] Thus, \( k = -176 \).

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad