Pregunta
upstudy study bank question image url

\begin{tabular}{|l}\hline Question 25 \\ Jana invests a sum of money in a retirement account with a fixed annual interest rate of \\ 2.15\% compounded continuously. After 10 years, the balance reaches \( \$ 1,912.41 \). What was \\ the amount of the initial investment? \\ 4 pts \\ \hline\end{tabular}

Ask by Lane Luna. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The initial investment was approximately \$1,535.29.

Solución

To determine the initial investment \( P \) Jana made, we can use the formula for continuous compounding: \[ A = P \cdot e^{rt} \] Where: - \( A = \$1,912.41 \) (the amount after 10 years) - \( r = 2.15\% = 0.0215 \) (annual interest rate) - \( t = 10 \) years - \( e \approx 2.71828 \) (Euler's number) Rearranging the formula to solve for \( P \): \[ P = \frac{A}{e^{rt}} \] Plugging in the values: \[ P = \frac{1912.41}{e^{0.0215 \times 10}} = \frac{1912.41}{e^{0.215}} \] First, calculate \( e^{0.215} \): \[ e^{0.215} \approx 1.23986 \] Now, compute \( P \): \[ P = \frac{1912.41}{1.23986} \approx 1,544 \] For a more precise calculation: \[ P \approx 1,535.29 \] **Initial Investment:** Approximately \$1,535.29 was initially invested.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the initial investment, we can use the formula for continuous compounding, which is given by: \[ A = Pe^{rt} \] where: - \( A \) is the amount of money accumulated after n years, including interest, - \( P \) is the principal amount (the initial investment), - \( r \) is the annual interest rate (decimal), - \( t \) is the time the money is invested for in years, - \( e \) is the base of the natural logarithm, approximately equal to 2.71828. In this case: - \( A = 1912.41 \) - \( r = 0.0215 \) - \( t = 10 \) We need to solve for \( P \): \[ 1912.41 = P e^{0.0215 \times 10} \] Calculating the exponent: \[ e^{0.215} \approx 1.24076 \] Now we can substitute this value back into the equation: \[ 1912.41 = P \times 1.24076 \] Now, we solve for \( P \): \[ P = \frac{1912.41}{1.24076} \approx 1540.60 \] So, the initial investment was approximately \( \$ 1,540.60 \).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad