Pregunta
upstudy study bank question image url

4 Calculate: \( \frac{4+6+8 \ldots+806}{5+10+15+\ldots+625} \) 5 If the 7 th term of an arithmetic series is -3 and the sum of the first 16 terms is 24 , determine the first term. 6 The first term of an arithmetic series is 5 and the last term is 61 . The sum of all the terms is 957 . Calculate the common difference.

Ask by George Frank. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Problem 6 Solution:** The common difference is **2**.

Solución

Let's solve **Problem 6** step by step. **Problem 6:** *The first term of an arithmetic series is 5 and the last term is 61. The sum of all the terms is 957. Calculate the common difference.* **Given:** - First term (\(a\)) = 5 - Last term (\(a_n\)) = 61 - Sum of the series (\(S_n\)) = 957 **Objective:** Find the common difference (\(d\)). **Step 1: Find the Number of Terms (\(n\))** The \(n\)-th term of an arithmetic series is given by: \[ a_n = a + (n - 1)d \] Plugging in the known values: \[ 61 = 5 + (n - 1)d \quad \Rightarrow \quad (n - 1)d = 56 \quad \Rightarrow \quad n - 1 = \frac{56}{d} \quad \Rightarrow \quad n = \frac{56}{d} + 1 \] **Step 2: Use the Sum Formula** The sum of the first \(n\) terms of an arithmetic series is: \[ S_n = \frac{n}{2} (a + a_n) \] Substituting the known values: \[ 957 = \frac{n}{2} (5 + 61) \quad \Rightarrow \quad 957 = \frac{n}{2} \times 66 \quad \Rightarrow \quad 957 = 33n \quad \Rightarrow \quad n = \frac{957}{33} = 29 \] **Step 3: Find the Common Difference (\(d\))** Now that we know \(n = 29\), substitute back into the equation from Step 1: \[ 29 = \frac{56}{d} + 1 \quad \Rightarrow \quad 28 = \frac{56}{d} \quad \Rightarrow \quad d = \frac{56}{28} = 2 \] **Answer:** The common difference is **2**. **Summary of Solutions:** 1. **Problem 4:** \[ \frac{4 + 6 + 8 + \ldots + 806}{5 + 10 + 15 + \ldots + 625} = \frac{3618}{875} \] 2. **Problem 5:** The first term is **-21**. 3. **Problem 6:** The common difference is **2**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To tackle the first question, let's break it down! The numerator is an arithmetic series where the first term is 4, the last term is 806, and the common difference is 2. You can determine the number of terms using the formula \(n = \frac{last - first}{difference} + 1\). Do the same for the denominator, where the series starts at 5, ends at 625, and has a common difference of 5. After calculating both sums using the formula \(S_n = \frac{n}{2}(first + last)\), you can find the ratio! As for the second question, you can use the formula for the sum of an arithmetic series: \(S_n = \frac{n}{2}(first + last)\). We know the 7th term \(a_7 = a + 6d = -3\) and the sum of the first 16 terms \(S_{16} = \frac{16}{2}(first + last) = 24\). From these, you can set up two equations to find the first term and the common difference. Happy calculating!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad