Pregunta
upstudy study bank question image url

8. \( y+11=2 x \) \( 3 y-6 x=-33 \)

Ask by Bond Delgado. in the United States
Feb 07,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There are infinitely many solutions where \( y = 2x - 11 \).

Solución

To solve the system of equations: \[ \begin{cases} y + 11 = 2x \quad \text{(1)} \\ 3y - 6x = -33 \quad \text{(2)} \end{cases} \] we can use the **substitution method**. Here's a step-by-step solution: ### Step 1: Solve Equation (1) for \( y \) Starting with equation (1): \[ y + 11 = 2x \] Subtract 11 from both sides to isolate \( y \): \[ y = 2x - 11 \] ### Step 2: Substitute \( y \) into Equation (2) Now, substitute \( y = 2x - 11 \) into equation (2): \[ 3y - 6x = -33 \] \[ 3(2x - 11) - 6x = -33 \] ### Step 3: Simplify and Solve for \( x \) Expand the equation: \[ 6x - 33 - 6x = -33 \] Combine like terms: \[ 0x - 33 = -33 \] \[ -33 = -33 \] ### Step 4: Interpret the Result The equation simplifies to a **true statement** (\(-33 = -33\)) without involving \( x \) or \( y \). This indicates that both original equations are **dependent** and represent the **same line** in the coordinate plane. ### Conclusion Since both equations describe the same relationship between \( x \) and \( y \), there are **infinitely many solutions** to the system. These solutions are all the points that lie on the line defined by \( y = 2x - 11 \). **Solution Set:** \[ \boxed{\left\{\, (x, y) \mid y = 2x - 11 \right\}} \] This means any real number \( x \) will produce a corresponding \( y \) that satisfies both equations.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the system of equations, we can rearrange the first equation. Start with \( y + 11 = 2x \). Subtract 11 from both sides to get \( y = 2x - 11 \). Now, substitute \( y \) in the second equation: \( 3(2x - 11) - 6x = -33 \). Distributing gives: \( 6x - 33 - 6x = -33 \). This simplifies to \( -33 = -33 \), which means our system has infinitely many solutions along the line defined by the first equation. Embrace the joy of discovering infinite solutions! This means the two equations represent the same line in a coordinate plane, and any point along this line will satisfy both equations. So, any x-value plugged into \( y = 2x - 11 \) yields a corresponding y-value, creating a whole treasure trove of solutions! When working with systems of equations, it's easy to make a small mistake like forgetting to distribute or incorrectly moving terms around. Always double-check each step! Simplifying carefully and ensuring each operation is balanced will lead you down the right path toward the solution, whether it’s a single point or infinitely many.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad