Pregunta
upstudy study bank question image url

Find the slope of the tangent Line given point. b) \( g(x)=\frac{1}{x} ;(1, x) \) \( g(x)=\frac{1}{x} \) \( g(x)=x \)

Ask by Garrett Simpson. in the United States
Feb 07,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The slope of the tangent line to \( g(x) = \frac{1}{x} \) at the point (1, 1) is –1.

Solución

To find the slope of the tangent line to the function \( g(x) = \frac{1}{x} \) at a specific point, we'll follow these steps: ### Given: - Function: \( g(x) = \frac{1}{x} \) - Point: \( (1, g(1)) \) ### Step 1: Find the Derivative of \( g(x) \) The derivative of a function gives us the slope of the tangent line at any point \( x \). \[ g'(x) = \frac{d}{dx}\left(\frac{1}{x}\right) = -\frac{1}{x^2} \] ### Step 2: Evaluate the Derivative at \( x = 1 \) Substitute \( x = 1 \) into the derivative to find the slope at that specific point. \[ g'(1) = -\frac{1}{(1)^2} = -1 \] ### Step 3: Conclusion The slope of the tangent line to the function \( g(x) = \frac{1}{x} \) at the point \( (1, 1) \) is **-1**. ### Additional Context (If Needed) If you're also considering the function \( g(x) = x \): - The derivative is \( g'(x) = 1 \), which means the slope of the tangent line at any point on this line is **1**. However, based on your query, the primary focus is on \( g(x) = \frac{1}{x} \), and the slope at \( (1, 1) \) is **-1**. **Answer:** For \( g(x) = \frac{1}{x} \) at the point (1, 1), the slope of the tangent line is –1.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the slope of the tangent line to the function \( g(x) = \frac{1}{x} \) at the point \( (1, g(1)) \) where \( g(1) = 1 \), we first need to determine the derivative of \( g(x) \). The derivative, which gives the slope of the tangent at any point, is calculated as \( g'(x) = -\frac{1}{x^2} \). Therefore, at \( x = 1 \), the slope of the tangent line is \( g'(1) = -1 \). Now, it's important to note that while \( g(x) = x \) is a linear function and its slope is constantly \( 1 \), the function \( g(x) = \frac{1}{x} \) creates a classic hyperbola, illustrating how slopes can dramatically change at different points along the curve, reminding us that calculus is all about examining those nuances!

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad