Pregunta
Let \( C=\left[\begin{array}{cc}-6 & 0 \\ 6 & 4\end{array}\right] \). Find \( 5 C \).
Ask by Rose Lambert. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\(5C = \begin{bmatrix}-30 & 0 \\ 30 & 20\end{bmatrix}\)
Solución
Calculate the matrix \( \left[\begin{array}{cc}-6 & 0 \\ 6 & 4\end{array}\right] \times 5 \).
Matrices by following steps:
- step0: Solution:
\(\left[\begin{array}{rr}{-6}&{0}\\{6}&{4}\end{array}\right]\times 5\)
- step1: Multiply the terms:
\(\left[\begin{array}{rr}{-6\times 5}&{0\times 5}\\{6\times 5}&{4\times 5}\end{array}\right]\)
- step2: Evaluate:
\(\left[\begin{array}{rr}{-30}&{0}\\{30}&{20}\end{array}\right]\)
The matrix \(5C\) is given by:
\[5C = \begin{bmatrix}-30 & 0 \\ 30 & 20\end{bmatrix}\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
To find \( 5C \), we simply multiply each entry of the matrix \( C \) by 5. Given: \[ C = \left[\begin{array}{cc}-6 & 0 \\ 6 & 4\end{array}\right] \] Now, multiplying each element by 5: \[ 5C = 5 \cdot \left[\begin{array}{cc}-6 & 0 \\ 6 & 4\end{array}\right] = \left[\begin{array}{cc}5 \cdot -6 & 5 \cdot 0 \\ 5 \cdot 6 & 5 \cdot 4\end{array}\right] \] This simplifies to: \[ 5C = \left[\begin{array}{cc}-30 & 0 \\ 30 & 20\end{array}\right] \] So, \( 5C = \left[\begin{array}{cc}-30 & 0 \\ 30 & 20\end{array}\right] \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium