Determine whether Rolle's Theorem applies to the following func \( g(x)=x^{3}+10 x^{2}+32 x+32 ;[-4,-2] \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To see if Rolle's Theorem applies, we first check if the function \( g(x) \) is continuous on the closed interval \( [-4,-2] \) and differentiable on the open interval \( (-4,-2) \). Since \( g(x) \) is a polynomial, it is continuous and differentiable everywhere. Next, we calculate \( g(-4) \) and \( g(-2) \): \[ g(-4) = (-4)^3 + 10(-4)^2 + 32(-4) + 32 = -64 + 160 - 128 + 32 = 0 \] \[ g(-2) = (-2)^3 + 10(-2)^2 + 32(-2) + 32 = -8 + 40 - 64 + 32 = 0 \] Both endpoints yield the same function value, \( g(-4) = g(-2) = 0 \). Therefore, by Rolle's Theorem, there exists at least one \( c \) in the interval \( (-4, -2) \) such that \( g'(c) = 0 \). Now, let’s find where that \( c \) might be!