Pregunta
12. Simplify the expression: \( \left(5 x^{6}\right)\left(3 x^{-2}\right) \)
Ask by Bates Spencer. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The simplified expression is \( 15x^{4} \).
Solución
To simplify the expression \( \left(5 x^{6}\right)\left(3 x^{-2}\right) \), follow these steps:
1. **Multiply the coefficients (constants) together:**
\[
5 \times 3 = 15
\]
2. **Apply the laws of exponents to multiply the \( x \) terms:**
\[
x^{6} \times x^{-2} = x^{6 + (-2)} = x^{4}
\]
This is based on the exponent rule:
\[
a^{m} \times a^{n} = a^{m+n}
\]
3. **Combine the results from steps 1 and 2:**
\[
15 \times x^{4} = 15x^{4}
\]
**Final Simplified Expression:**
\[
15x^{4}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To simplify the expression \( \left(5 x^{6}\right)\left(3 x^{-2}\right) \), start by multiplying the coefficients and combining the powers of \( x \). The coefficients are \( 5 \) and \( 3 \), which multiply to \( 15 \). For the powers of \( x \), use the rule \( x^{a} \cdot x^{b} = x^{a+b} \). Thus, \( x^{6} \cdot x^{-2} = x^{6 + (-2)} = x^{4} \). Putting it all together, the simplified expression is \( 15 x^{4} \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium