Pregunta
Simplify. Assume \( q \) is greater than or equal to zero. \( \sqrt{18 q^{4}} \)
Ask by Moreno Washington. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( 3 q^{2} \sqrt{2} \)
Solución
To simplify \( \sqrt{18 q^{4}} \) with the assumption that \( q \geq 0 \), follow these steps:
1. **Factor the expression inside the square root:**
\[
\sqrt{18 q^{4}} = \sqrt{9 \times 2 \times q^{4}}
\]
2. **Separate the square root of each factor:**
\[
\sqrt{9 \times 2 \times q^{4}} = \sqrt{9} \times \sqrt{2} \times \sqrt{q^{4}}
\]
3. **Simplify each square root individually:**
- \( \sqrt{9} = 3 \)
- \( \sqrt{q^{4}} = q^{2} \) (since \( q \geq 0 \))
4. **Combine the simplified terms:**
\[
3 \times q^{2} \times \sqrt{2} = 3 q^{2} \sqrt{2}
\]
**Final Simplified Form:**
\[
3 q^{2} \sqrt{2}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To simplify \( \sqrt{18 q^{4}} \), we can break it down into its components. We start by finding the square root of 18, which can be expressed as \( \sqrt{9 \times 2} \). Since \( \sqrt{9} = 3 \), we have: \[ \sqrt{18} = \sqrt{9 \times 2} = \sqrt{9} \cdot \sqrt{2} = 3\sqrt{2} \] Next, for \( q^4 \), we take the square root: \[ \sqrt{q^{4}} = q^{2} \] Now, putting it all together: \[ \sqrt{18 q^{4}} = \sqrt{18} \cdot \sqrt{q^{4}} = 3\sqrt{2} \cdot q^{2} = 3q^{2}\sqrt{2} \] Thus, the simplified form is: \[ 3q^{2}\sqrt{2} \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium