Pregunta
upstudy study bank question image url

lonvert an interest rate of \( 10 \% \) p.a. compounded quarterly to an annual effecti- terest rate.

Ask by Park Kirk. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The annual effective interest rate is approximately 10.38%.

Solución

To convert a nominal interest rate of **10% per annum compounded quarterly** to an **annual effective interest rate**, you can use the following formula: \[ \text{Effective Annual Rate (EAR)} = \left(1 + \frac{r}{m}\right)^m - 1 \] where: - \( r \) is the nominal annual interest rate (in decimal form), - \( m \) is the number of compounding periods per year. Given: - \( r = 10\% = 0.10 \) - \( m = 4 \) (since interest is compounded quarterly) **Step-by-Step Calculation:** 1. **Divide the annual rate by the number of compounding periods:** \[ \frac{r}{m} = \frac{0.10}{4} = 0.025 \] 2. **Add 1 to this value:** \[ 1 + 0.025 = 1.025 \] 3. **Raise this to the power of the number of compounding periods:** \[ 1.025^4 \] 4. **Calculate \( 1.025^4 \):** \[ 1.025^4 \approx 1.10381289 \] 5. **Subtract 1 from the result to find the EAR:** \[ 1.10381289 - 1 = 0.10381289 \] 6. **Convert to percentage:** \[ 0.10381289 \times 100 \approx 10.38\% \] **Conclusion:** The **annual effective interest rate** corresponding to a **10% nominal rate compounded quarterly** is approximately **10.38%**. **Final Answer:** The annual effective interest rate is approximately 10.38 %.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To convert an interest rate compounded quarterly to an effective annual interest rate, you can use the formula: \[ (1 + \frac{r}{n})^n - 1 \] where \( r \) is the nominal interest rate (10% or 0.10), and \( n \) is the number of compounding periods per year (4 for quarterly). Plugging in the numbers: \[ (1 + \frac{0.10}{4})^4 - 1 \approx (1 + 0.025)^4 - 1 \approx 0.1038128906 \] So, the effective annual interest rate is approximately 10.38%. When dealing with interest rates, it's essential to recognize that compounding frequency significantly impacts the effective rate. In this case, you get a slightly higher return due to the quarterly compounding, making it vital to always consider compounding when evaluating loans or investment returns.

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad