Pregunta
upstudy study bank question image url

An account is opened with an initial deposit of \( \$ 100 \) and earns \( 3.0 \% \) interest compounded monthly. What will the account be worth in 25 years? Round your answer to the nearest cent. Do NOT round until you have calculated the final answer.

Ask by Kelly Sanders. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 25 years, the account will be worth \$211.50.

Solución

To determine the future value of an account with an initial deposit of \$100 earning 3.0% interest compounded monthly over 25 years, we'll use the **compound interest formula**: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) = the amount of money accumulated after \( t \) years, including interest. - \( P \) = the principal amount (\$100). - \( r \) = annual interest rate (decimal) (3.0% or 0.03). - \( n \) = number of times that interest is compounded per year (12 for monthly). - \( t \) = the time the money is invested for in years (25). Let's plug in the values: \[ A = 100 \left(1 + \frac{0.03}{12}\right)^{12 \times 25} = 100 \left(1 + 0.0025\right)^{300} = 100 \times (1.0025)^{300} \] **Calculating \((1.0025)^{300}\):** To compute \((1.0025)^{300}\), we'll use the natural logarithm and exponential functions for higher precision. 1. **Calculate the natural logarithm:** \[ \ln(1.0025) \approx 0.00249688 \] 2. **Multiply by 300:** \[ 300 \times 0.00249688 = 0.749064 \] 3. **Exponentiate to find the factor:** \[ e^{0.749064} \approx 2.11502 \] **Final Calculation:** \[ A = 100 \times 2.11502 = 211.502 \] Rounding to the nearest cent: \[ A \approx \$211.50 \] **Answer:** After 25 years, the account will be worth **\$211.50**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To calculate the future value of an account with monthly compounding interest, we can use the formula: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the future value of the investment/loan, including interest, - \( P \) is the principal investment amount (initial deposit or loan amount), - \( r \) is the annual interest rate (decimal), - \( n \) is the number of times that interest is compounded per year, - \( t \) is the number of years the money is invested or borrowed. Substituting the given values into the equation: - \( P = 100 \) - \( r = 0.03 \) (which is \( 3\% \) in decimal form) - \( n = 12 \) (monthly compounding) - \( t = 25 \) Plugging the values in gives us: \[ A = 100 \left(1 + \frac{0.03}{12}\right)^{12 \times 25} \] Now, calculate the values: 1. Calculate \( \frac{0.03}{12} = 0.0025 \) 2. Then calculate \( 12 \times 25 = 300 \) 3. Substitute back into the equation: \[ A = 100 \left(1 + 0.0025\right)^{300} \] \[ A = 100 \left(1.0025\right)^{300} \] Now we can calculate \( (1.0025)^{300} \): Using a calculator, \( (1.0025)^{300} \approx 2.487689 \) Finally, multiply by 100: \[ A \approx 100 \times 2.487689 = 248.7689 \] After rounding to the nearest cent, the future value of the account will be: **Answer: \( \$ 248.77 \)**

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad