Pregunta
Rewrite the equation \( 3 x-4 y=12 \) in slope-intercept form, solving for \( y \). Show your work.
Ask by Norris Wade. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
To rewrite \( 3x - 4y = 12 \) in slope-intercept form, solve for \( y \):
1. Subtract \( 3x \) from both sides:
\[
-4y = -3x + 12
\]
2. Divide by \( -4 \):
\[
y = \frac{3}{4}x - 3
\]
So, the slope-intercept form is:
\[
y = \frac{3}{4}x - 3
\]
Solución
To rewrite the equation \( 3x - 4y = 12 \) in **slope-intercept form**, which is \( y = mx + b \) (where \( m \) is the slope and \( b \) is the y-intercept), follow these steps:
1. **Start with the original equation:**
\[
3x - 4y = 12
\]
2. **Isolate the term containing \( y \):**
Subtract \( 3x \) from both sides to move the \( x \)-term to the right side.
\[
-4y = -3x + 12
\]
3. **Solve for \( y \):**
Divide every term by \( -4 \) to solve for \( y \).
\[
y = \frac{-3x}{-4} + \frac{12}{-4}
\]
Simplify the fractions:
\[
y = \frac{3}{4}x - 3
\]
4. **Final Slope-Intercept Form:**
\[
y = \frac{3}{4}x - 3
\]
**Conclusion:**
The equation \( 3x - 4y = 12 \) rewritten in slope-intercept form is:
\[
y = \frac{3}{4}x - 3
\]
Here, the **slope (\( m \))** is \( \frac{3}{4} \) and the **y-intercept (\( b \))** is \( -3 \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To rewrite the equation \( 3x - 4y = 12 \) in slope-intercept form, we need to solve for \( y \). 1. Start with the original equation: \[ 3x - 4y = 12 \] 2. To isolate \( y \), first subtract \( 3x \) from both sides: \[ -4y = -3x + 12 \] 3. Next, divide every term by -4 to solve for \( y \): \[ y = \frac{3}{4}x - 3 \] Now the equation is in slope-intercept form, \( y = mx + b \), where \( m = \frac{3}{4} \) is the slope and \( b = -3 \) is the y-intercept.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium