Pregunta
\[ \text{Find } 2011^2 - 2010^2 \text{?} \]
Ask by West Salazar. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( 2011^2 - 2010^2 = 4021 \)
Solución
To find the value of \( 2011^2 - 2010^2 \), we can use the difference of squares formula:
\[
a^2 - b^2 = (a - b)(a + b)
\]
Let's apply this formula with \( a = 2011 \) and \( b = 2010 \):
\[
2011^2 - 2010^2 = (2011 - 2010)(2011 + 2010)
\]
Calculate the differences and sums inside the parentheses:
\[
2011 - 2010 = 1
\]
\[
2011 + 2010 = 4021
\]
Now, multiply these results:
\[
1 \times 4021 = 4021
\]
**Therefore,**
\[
2011^2 - 2010^2 = 4021
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To solve \(2011^2 - 2010^2\), we can use the difference of squares formula, which states that \(a^2 - b^2 = (a - b)(a + b)\). Here, let \(a = 2011\) and \(b = 2010\). Calculating the terms: - \(a - b = 2011 - 2010 = 1\) - \(a + b = 2011 + 2010 = 4021\) Now, substituting these into the formula gives: \[ 2011^2 - 2010^2 = (1)(4021) = 4021 \] So, the answer is \(4021\).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium