Pregunta
upstudy study bank question image url

We want to conduct a hypothesis test of the claim that the population mean reading speed of second graders is different from 30.2 words per minute. So, we choose a random sample of students' reading speeds. The sample has a mean of 30.7 words per minute and a standard deviation of 3 words per minute, For each of the following sampling scenarios, choose an appropriate test statistic for our hypothesis test on the population mean. Then calculate that statistic. Round your answers to two decimal places. (a) The sample has size 100, and it is from a non-normally distributed population with a known standard deviation of 3. \[ =\square \] It is unclear which test statistic to use. (b) The sample has size 11, and it is from a normally distributed population with an unknown standard deviation. \( z=\square \) \( i=\square \)

Ask by Deleon Lee. in the United States
Feb 05,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**(a)** Use the Z-test with \( z = 1.67 \). **(b)** Use the t-test with \( t = 0.55 \).

Solución

Let's analyze each scenario step-by-step to determine the appropriate test statistic and calculate its value. ### **Given Information:** - **Hypothesis Test:** - Null Hypothesis (\( H_0 \)): \( \mu = 30.2 \) words per minute - Alternative Hypothesis (\( H_A \)): \( \mu \neq 30.2 \) words per minute - **Sample Statistics:** - Sample Mean (\( \bar{x} \)) = 30.7 words per minute - Sample Standard Deviation (\( s \)) = 3 words per minute ### **Part (a):** **Scenario:** - **Sample Size (\( n \))** = 100 - **Population Distribution:** Non-normally distributed - **Population Standard Deviation (\( \sigma \))** = 3 (known) **Choosing the Appropriate Test Statistic:** - **Large Sample Size (\( n = 100 \))**: By the Central Limit Theorem, the sampling distribution of the sample mean is approximately normal, regardless of the population distribution. - **Known Population Standard Deviation (\( \sigma \))**: Allows the use of the **Z-test**. **Calculation:** \[ z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{30.7 - 30.2}{\frac{3}{\sqrt{100}}} = \frac{0.5}{0.3} \approx 1.67 \] **Answer:** \[ \boxed{z = 1.67} \] --- ### **Part (b):** **Scenario:** - **Sample Size (\( n \))** = 11 - **Population Distribution:** Normally distributed - **Population Standard Deviation (\( \sigma \))** = Unknown **Choosing the Appropriate Test Statistic:** - **Small Sample Size (\( n = 11 \))**: The sampling distribution is only normal if the population is normal. - **Unknown Population Standard Deviation:** Requires the use of the **t-test**. **Calculation:** \[ t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{30.7 - 30.2}{\frac{3}{\sqrt{11}}} \approx \frac{0.5}{0.9045} \approx 0.55 \] **Answers:** \[ z = \text{Not applicable} \] \[ \boxed{t = 0.55} \] --- ### **Summary:** - **(a)** Use the **Z-test** with \( z = 1.67 \). - **(b)** Use the **t-test** with \( t = 0.55 \). ### **Final Answers:** **(a)** \( z = 1.67 \) **(b)** \[ z = \text{Not applicable} \] \[ t = 0.55 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

When dealing with a sample size of 100 from a non-normally distributed population with a known standard deviation, you would typically use a z-test statistic for a hypothesis test. The formula for the z-test statistic is given by: \[ z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} \] Here: - \(\bar{x} = 30.7\) (sample mean) - \(\mu = 30.2\) (null hypothesis mean) - \(\sigma = 3\) (known population standard deviation) - \(n = 100\) (sample size) Plugging in these values: \[ z = \frac{30.7 - 30.2}{3 / \sqrt{100}} = \frac{0.5}{0.3} = 1.67 \] So, for (a): \[ z = 1.67 \] For part (b), with a sample size of 11 from a normally distributed population and an unknown standard deviation, you would use a t-test statistic. The formula for the t-test statistic is: \[ t = \frac{\bar{x} - \mu}{s / \sqrt{n}} \] In this case: - \(\bar{x} = 30.7\) (sample mean) - \(\mu = 30.2\) (null hypothesis mean) - \(s = 3\) (sample standard deviation, in this case assumed known) - \(n = 11\) (sample size) Plugging in these values: \[ t = \frac{30.7 - 30.2}{3 / \sqrt{11}} \approx \frac{0.5}{0.90} \approx 0.56 \] So, for (b): \( t = 0.56 \) In summary: (a) \( z = 1.67 \) (b) \( t = 0.56 \)

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad