Pregunta
Simplify the expression. \( \left(-n^{5}\right)^{5}=\square \)
Ask by Ruiz Harmon. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The simplified expression is \( n^{25} \).
Solución
Calculate or simplify the expression \( (-n^5)^5 \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(n^{5}\right)^{5}\)
- step1: Multiply the exponents:
\(n^{5\times 5}\)
- step2: Multiply the numbers:
\(n^{25}\)
The simplified expression is \( \left(-n^{5}\right)^{5} = n^{25} \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To simplify the expression \((-n^{5})^{5}\), you apply the power of a power rule. This means you multiply the exponents: \((-n^{5})^{5} = -1^{5} \cdot (n^{5})^{5} = -1 \cdot n^{25} = -n^{25}\). So, the simplified expression is \(-n^{25}\). If you need to simplify it even more, just remember that this indicates that \(n\) is raised to the 25th power but has a negative sign in front of it!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium