Pregunta
upstudy study bank question image url

Consider an object moving along a line with the given velocity v . Assume t is time measured in seconds and velocities have units of
a. Determine when the motion is in the positive direction and when it is in the negative direction.
b. Find the displacement over the given interval.
c. Find the distance traveled over the given interval.

a. When is the motion in the positive direction? Select the correct choice and, if necessary, fill in the answer box to complete your choice.
A. The motion is in the positive direction for t -values in the interval(s) [ 0,3 , .
(Use a comma to separate answers as needed. Type your answers in interval notation.)
B. The motion is never in the positive direction.
When is the motion in the negative direction? Select the correct choice and, if necessary, fill in the answer box to complete your choice.
A. The motion is in the negative direction for -values in the interval(s)
(Use a comma to separate answers as needed. Type your answers in interval notation.)
B. The motion is never in the negative direction.

Ask by Mcguire Coleman. in the United States
Jan 23,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Part a:
  • Positive Direction: in the intervals and
  • Negative Direction: in the interval
Part b:
  • Displacement: 36 meters
Part c:
  • Distance Traveled: meters

Solución

To solve the problem, we will follow the steps outlined:
  1. Extract known conditions:
    • The velocity function is given by .
    • The interval for time is .

Part a: Determine when the motion is in the positive and negative direction.

The motion is in the positive direction when and in the negative direction when .

Step 1: Find the roots of the velocity function.

To find when the velocity is zero, we will solve the equation :
We can simplify this equation by dividing all terms by 2:
Now, we will use the quadratic formula where .

Step 2: Calculate the discriminant and roots.

Let’s calculate the discriminant:
Now, we can find the roots:
Calculating the two roots:

Step 3: Test intervals around the roots.

We will test the intervals , , and to determine the sign of .
  • For , choose :
  • For , choose :
  • For , choose :

Conclusion for Part a:

  • The motion is in the positive direction for in the intervals and .
  • The motion is in the negative direction for in the interval .

Part b: Find the displacement over the given interval.

Displacement is calculated by integrating the velocity function over the interval :
Let’s calculate this integral:
Calculating the integral:
Calculating at the bounds:
Calculating each term:
Calculating:

Part c: Find the distance traveled over the given interval.

Distance is the integral of the absolute value of the velocity function. We need to split the integral at the points where the velocity changes sign, which are and :
Calculating each integral:
  1. From 0 to 3:
  2. From 3 to 5:
  3. From 5 to 6:
Let’s calculate these integrals:
  1. From 0 to 3:
  2. From 3 to 5:
  3. From 5 to 6:
    [
    = \left[ \frac{2}{3}t^3 -

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine when the motion is in the positive or negative direction, we first analyze the velocity function . By finding the roots of the equation , we can identify the intervals of motion. The roots are at and . Thus, the motion is positive for the intervals and , and negative for .
To summarize:
  • The motion is in the positive direction for -values in the interval(s) , .
  • The motion is in the negative direction for -values in the interval(s) .
Let’s confirm this fun mathematical journey. The analysis shows how velocities shift from positive to negative and vice versa, illustrating the object’s thrilling adventure along its path—uphill when positive and downhill when negative!
Just a little more trivia for you: if you’re fascinated by motion and velocity, you might enjoy diving into the classics of physics and calculus. Books like “Calculus” by James Stewart cover these concepts thoroughly and with real-world examples that frame math as a story—your own scientific adventure!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad