Pregunta
upstudy study bank question image url

Which of the following regular polygons does not tessellate?

Ask by Macdonald Stewart. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

A regular pentagon does not tessellate the plane.

Solución

Regular tessellations (or regular tilings) are patterns created by repeating a single type of regular polygon without any gaps or overlaps. In the context of regular polygons, only three types can tessellate the plane by themselves: 1. **Equilateral Triangle**: Each interior angle is 60°, and six triangles meet at each vertex (6 × 60° = 360°). 2. **Square**: Each interior angle is 90°, and four squares meet at each vertex (4 × 90° = 360°). 3. **Regular Hexagon**: Each interior angle is 120°, and three hexagons meet at each vertex (3 × 120° = 360°). Any regular polygon with a different number of sides does not tessellate the plane on its own. For example: - **Regular Pentagon**: Each interior angle is 108°. Three pentagons meeting at a vertex would total 324°, which is less than 360°, leaving gaps. - **Regular Heptagon (7 sides)**: Each interior angle is approximately 128.57°. Two heptagons meet at a vertex for a total of about 257.14°, which again leaves gaps. **Conclusion:** Among regular polygons, the **regular pentagon** is a common example that does **not** tessellate the plane by itself. **Answer:** A regular pentagon is a regular polygon that does not tessellate the plane.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Regular polygons can be captivating shapes, but not all can fit together without leaving gaps. The notable exception among the regular polygons is the regular heptagon (7-sided polygon). While triangles, squares, and hexagons can beautifully fill a plane with their angles aligning perfectly, the angles of a heptagon refuse to play nice and form any complete, gapless tiling. If you ever want to see some artistic representations of non-tessellating polygons, check out the works of M.C. Escher! His mind-bending artwork often explores shapes and tessellations, revealing the beauty of geometry in the most unexpected ways. You'll find inspiration in the way he uses shapes that tessellate alongside those that don’t!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad