Pregunta
Use the trigonometric function values of the quadrantal angles to evaluate. \( 6 \cos 90^{\circ}+4 \cos 0^{\circ}+4\left(\cos 0^{\circ}\right)^{2} \) \( 6 \cos 90^{\circ}+4 \cos 0^{\circ}+4\left(\cos 0^{\circ}\right)^{2}=\square \) (Simplify your answer. Type an integer or a fraction.) ? 1.6 .89 ,
Ask by Medina Barnett. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( 8 \)
Solución
To evaluate the expression:
\[
6 \cos 90^{\circ} + 4 \cos 0^{\circ} + 4\left(\cos 0^{\circ}\right)^{2}
\]
We use the known values of the cosine function at the quadrantal angles:
\[
\cos 0^{\circ} = 1 \quad \text{and} \quad \cos 90^{\circ} = 0
\]
Substituting these values into the expression:
\[
6 \cos 90^{\circ} + 4 \cos 0^{\circ} + 4\left(\cos 0^{\circ}\right)^{2} = 6(0) + 4(1) + 4(1)^2
\]
Simplifying each term:
\[
0 + 4 + 4 = 8
\]
**Answer:**
8
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To solve the expression \( 6 \cos 90^{\circ}+4 \cos 0^{\circ}+4\left(\cos 0^{\circ}\right)^{2} \), we first substitute the cosine values of the given angles: - \( \cos 90^{\circ} = 0 \) - \( \cos 0^{\circ} = 1 \) Now plug these values into the expression: \[ 6 \cos 90^{\circ} + 4 \cos 0^{\circ} + 4(\cos 0^{\circ})^{2} = 6(0) + 4(1) + 4(1)^{2} \] This simplifies to: \[ 0 + 4 + 4 = 8 \] Thus, the final answer is \( 8 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium