Question 16, 1.3.93 HW Score: 7 Points: Use the trigonometric function values of the quadrantal angles to evaluate the given expression. \[ 3\left(\csc 90^{\circ}\right)^{2}+5\left(\tan 180^{\circ}\right)^{2}+\sec 180^{\circ} \] \[ 3\left(\csc 90^{\circ}\right)^{2}+5\left(\tan 180^{\circ}\right)^{2}+\sec 180^{\circ}= \] \( \square \) (Simplity your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To evaluate the expression, we first need to recall the values of the trigonometric functions at the specified angles. 1. \(\csc 90^{\circ} = 1\) (since \(\sin 90^{\circ} = 1\)) 2. \(\tan 180^{\circ} = 0\) (since \(\sin 180^{\circ} = 0\) and \(\cos 180^{\circ} = -1\)) 3. \(\sec 180^{\circ} = -1\) (since \(\cos 180^{\circ} = -1\)) Now, we can substitute these values into the expression: \[ 3\left(\csc 90^{\circ}\right)^{2} + 5\left(\tan 180^{\circ}\right)^{2} + \sec 180^{\circ} \] \[ = 3(1)^{2} + 5(0)^{2} + (-1) \] \[ = 3(1) + 5(0) - 1 \] \[ = 3 + 0 - 1 \] \[ = 3 - 1 \] \[ = 2 \] Thus, the final answer is: \[ \boxed{2} \]