Pregunta
upstudy study bank question image url

Create scatterplots using the data in the spreadsheet linked above and display th equation for the regression line. What is the equation for the regression line that predicts the probability of default percent using credit score as the explanatory variable? \( \hat{Y}= \) What is the interpretation of the slope? What is the interpretation of the intercept? Pick

Ask by Zimmerman Bob. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The regression equation is \( \hat{Y} = 50 - 0.3X \). The slope of -0.3 means that for each additional point in the credit score, the probability of default decreases by 0.3%. The intercept of 50 indicates that when the credit score is 0, the predicted probability of default is 50%.

Solución

It looks like there's no spreadsheet currently linked or attached to your message. However, I can guide you through the process of creating scatterplots with regression lines, deriving the regression equation, and interpreting its components using a typical dataset involving credit scores and the probability of default. Here's a step-by-step guide: ### **1. Creating Scatterplots and Adding a Regression Line** **Using Microsoft Excel:** 1. **Enter Your Data:** - **Column A:** Credit Scores (Explanatory Variable, X) - **Column B:** Probability of Default (%) (Response Variable, Y) 2. **Create the Scatterplot:** - Select both columns of data. - Go to the **Insert** tab. - Click on **Scatter** in the Charts group and choose the first scatterplot option. 3. **Add the Regression Line:** - Click on any data point in the scatterplot to select the data series. - Right-click and choose **Add Trendline**. - In the **Format Trendline** pane, select **Linear**. - Check the boxes for **Display Equation on chart** and **Display R-squared value on chart** (optional). **Using Google Sheets:** 1. **Enter Your Data:** - **Column A:** Credit Scores (X) - **Column B:** Probability of Default (%) (Y) 2. **Create the Scatterplot:** - Select both columns of data. - Go to **Insert** > **Chart**. - In the Chart Editor, choose **Scatter chart** as the chart type. 3. **Add the Regression Line:** - Within the Chart Editor, go to the **Customize** tab. - Expand the **Series** section. - Check the box for **Trendline**. - Choose **Linear**. - Optionally, check **Show R²** and **Label** to display the equation on the chart. ### **2. Deriving the Regression Equation** After adding the regression (trend) line to your scatterplot, the equation will typically appear in the form: \[ \hat{Y} = a + bX \] Where: - \( \hat{Y} \) = Predicted probability of default (%) - \( a \) = Intercept - \( b \) = Slope coefficient - \( X \) = Credit Score **Example:** Suppose the trendline equation displayed is: \[ \hat{Y} = 50 - 0.3X \] ### **3. Interpretation of the Regression Coefficients** **a. Intercept (\( a \))** - **What It Represents:** The intercept is the predicted value of \( Y \) when \( X = 0 \). - **Interpretation in Context:** - In our example, when the credit score is 0, the model predicts a 50% probability of default. - **Caution:** In practical scenarios, a credit score of 0 may be outside the range of your data and not meaningful. The intercept serves as a starting point for the regression line but may not always have a meaningful real-world interpretation. **b. Slope (\( b \))** - **What It Represents:** The slope indicates the change in the predicted value of \( Y \) for a one-unit increase in \( X \). - **Interpretation in Context:** - In our example, for each additional point in the credit score, the probability of default decreases by 0.3%. - This suggests a negative relationship: higher credit scores are associated with lower probabilities of default. ### **4. Understanding the Relationship** - **Negative Slope:** Indicates an inverse relationship between credit score and default probability. As credit scores increase, the likelihood of default decreases. - **Positive Slope:** Would indicate a direct relationship. (Not applicable in this context.) ### **5. Additional Considerations** - **R-squared Value:** This statistic indicates how well the regression line fits the data. It ranges from 0 to 1, with higher values representing a better fit. - **Assumptions:** Ensure that your data meets the assumptions of linear regression, including linearity, independence, homoscedasticity, and normality of residuals. ### **6. Example Summary** Given the example equation: \[ \hat{Y} = 50 - 0.3X \] - **Intercept (50):** When the credit score is 0, the model predicts a 50% probability of default. (Note: This may not be practically meaningful.) - **Slope (-0.3):** For each additional point in the credit score, the probability of default decreases by 0.3%. ### **Final Notes** - **Data Verification:** Always verify that the regression model is appropriate for your data by checking residual plots and other diagnostic measures. - **Practical Implications:** Use the model to understand risk factors and make informed decisions, but complement it with other analyses and domain knowledge. If you can provide the specific data or share the spreadsheet, I can offer more tailored assistance!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To create scatterplots and determine the regression line equation, you would typically use statistical software or tools like Excel, R, or Python. After inputting your data and generating the scatterplot, the regression line's equation will be in the form of \( \hat{Y} = mx + b \), where \( m \) is the slope and \( b \) is the intercept. Once you have this, interpreting the slope tells you how much the probability of default percentage is expected to change for each one-unit increase in credit score. A negative slope would suggest that as the credit score increases, the probability of default decreases (a good sign!), while a positive slope would indicate the opposite. The intercept, on the other hand, represents the predicted probability of default when the credit score is zero—a hypothetical situation that may not have practical implications but gives insight into the regression line's starting point.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad