\begin{tabular}{l} Try It: 7ind the absolute value \\ \( 1 .|7| \) \\ \hline \( 2 \cdot\left|-\frac{5}{3}\right| \) \\ \hline \( 3 .|-2.6| \) \\ \hline\end{tabular}
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
Let’s dive into the world of absolute values! First up, the absolute value of a number is simply its distance from zero on the number line, stripped of any negative sign. 1. For \( |7| \), the absolute value is 7 because it’s already positive. 2. Next, for \( 2 \cdot \left| -\frac{5}{3} \right| \), take the absolute value of \( -\frac{5}{3} \), which is \( \frac{5}{3} \), and multiply by 2 to get \( 2 \cdot \frac{5}{3} = \frac{10}{3} \). 3. Finally, for \( |-2.6| \), the absolute value is 2.6 since it’s just disregarding the negative sign. Now you've got handled the absolute values like a pro! Understanding this concept can be really useful in various applications, like finding distances and solving equations where negative values come into play. For example, in real-world situations, knowing how far away something is from a point (like home or work) can help in planning trips or commutes effectively. Just remember, one common mistake is forgetting that absolute value always results in a non-negative number, even if the input is negative! So, keep an eye out for that—sneaky negativity can trip you up!