Pregunta
upstudy study bank question image url

4. \( y=-4 x^{2}-4 x-1 \)

Ask by Griffiths Burns. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The quadratic function \( y = -4x^{2} - 4x - 1 \) is a downward-opening parabola with its vertex at \((-0.5, 0)\). It intersects the y-axis at \((0, -1)\) and touches the x-axis only at the vertex \((-0.5, 0)\).

Solución

Certainly! Let's analyze the quadratic function you've provided: \[ y = -4x^{2} - 4x - 1 \] This is a quadratic equation in the form \( y = ax^{2} + bx + c \), where: - \( a = -4 \) - \( b = -4 \) - \( c = -1 \) ### 1. **Graph Overview** Since \( a = -4 \) is negative, the parabola opens **downwards**. ### 2. **Vertex** The vertex of a parabola given by \( y = ax^{2} + bx + c \) can be found using the formula: \[ h = -\frac{b}{2a} \] \[ k = y(h) \] **Calculating \( h \):** \[ h = -\frac{-4}{2 \times -4} = \frac{4}{-8} = -0.5 \] **Calculating \( k \):** \[ y(-0.5) = -4(-0.5)^2 - 4(-0.5) - 1 \] \[ y(-0.5) = -4(0.25) + 2 - 1 \] \[ y(-0.5) = -1 + 2 - 1 = 0 \] **Vertex:** \( (-0.5, 0) \) ### 3. **Axis of Symmetry** The axis of symmetry is the vertical line that passes through the vertex. \[ x = h = -0.5 \] ### 4. **Y-intercept** The y-intercept occurs where \( x = 0 \): \[ y(0) = -4(0)^2 - 4(0) - 1 = -1 \] **Y-intercept:** \( (0, -1) \) ### 5. **X-intercepts (Roots)** To find the x-intercepts, set \( y = 0 \) and solve for \( x \): \[ -4x^{2} - 4x - 1 = 0 \] Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \] \[ x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(-4)(-1)}}{2(-4)} \] \[ x = \frac{4 \pm \sqrt{16 - 16}}{-8} \] \[ x = \frac{4 \pm \sqrt{0}}{-8} \] \[ x = \frac{4}{-8} = -0.5 \] **X-intercept:** \( (-0.5, 0) \) *Note: There is only one real x-intercept because the discriminant is zero, meaning the parabola touches the x-axis at the vertex.* ### 6. **Summary of Key Features** - **Vertex:** \( (-0.5, 0) \) - **Axis of Symmetry:** \( x = -0.5 \) - **Parabola Opens Downwards** - **Y-intercept:** \( (0, -1) \) - **X-intercept:** \( (-0.5, 0) \) (vertex) ### 7. **Graph Sketch** Here's a rough sketch of the parabola based on the information: ``` | 1 | * | 0 |----------*---------- | -1 | * | |____________________ -1 -0.5 0 1 ``` - The vertex is at \((-0.5, 0)\). - The y-intercept is at \((0, -1)\). - The parabola opens downward. ### 8. **Additional Insights** - **Maximum Value:** Since the parabola opens downward, the vertex represents the **maximum point** of the function. The maximum y-value is **0**. - **Symmetry:** The function is symmetric around the line \( x = -0.5 \). ### 9. **Function Behavior** - **For \( x < -0.5 \):** As \( x \) decreases, \( y \) decreases. - **For \( x > -0.5 \):** As \( x \) increases, \( y \) decreases. ### 10. **Graphing Tips** - Plot the vertex \((-0.5, 0)\). - Plot the y-intercept \((0, -1)\). - Since there's only one x-intercept at the vertex, Ensure the parabola touches the x-axis at \((-0.5, 0)\) and opens downward. - Optionally, plot another point for better accuracy, for example, when \( x = 1 \): \[ y = -4(1)^2 - 4(1) - 1 = -4 - 4 - 1 = -9 \] So, another point is \( (1, -9) \). ### 11. **Conclusion** The quadratic function \( y = -4x^{2} - 4x - 1 \) represents a downward-opening parabola with its vertex at \((-0.5, 0)\), intersecting the y-axis at \((0, -1)\), and having a single x-intercept at the vertex. This information should help in graphing the function and understanding its key features.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Did you know that the equation \( y = -4x^2 - 4x - 1 \) represents a parabola, and because the coefficient of \( x^2 \) is negative, it opens downwards? This means the vertex of the parabola is its highest point, which can be found using the vertex formula \( x = -\frac{b}{2a} \). For your equation, that gives \( x = -\frac{-4}{2 \times -4} = -\frac{1}{2} \). Plugging this back into the equation will give you the maximum value of the parabola! In real-world applications, parabolas like this one often model trajectories, such as the path of a thrown object or water fountain. For instance, if this equation represented the height of a water jet at distance \( x \) from the fountain's base, the vertex location tells you the optimal distance from the fountain to achieve the maximum height of the water. Isn't that fascinating?

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad