Pregunta
upstudy study bank question image url

Find \( f+g, f-g \), fg and \( \frac{f}{g} \). Determine the domain for each function. \[ f(x)=5 x+8, g(x)=x+6 \] \( (\mathrm{f}-\mathrm{g})(\mathrm{x})=4 \mathrm{x}+2 \) (Simplify your answer.) What is the domain of \( f-g \) ? A. The domain of \( f-g \) is \( (-\infty, \infty) \). (Type your answer in interval notation.) B. The domain of \( f-g \) is \( \{\quad \). (Use a comma to separate answers as neede C. The domain of \( f-g \) is \( \varnothing \). \[ (f g)(x)=5 x^{2}+38 x+48 \] (Simplify your answer.) What is the domain of fg ? A. The domain of \( f g \) is \( \square \) \} (Use a comma to separate answers as needed ) B. The domain of \( f g \) is \( \square \) (Type your answer in interval notation.) C. The domain of \( f g \) is \( \varnothing \)

Ask by Logan Barker. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- **Sum (\( f + g \)):** \( 6x + 14 \) **Domain:** All real numbers **Option:** A. \( (-\infty, \infty) \) - **Difference (\( f - g \)):** \( 4x + 2 \) **Domain:** All real numbers **Option:** A. \( (-\infty, \infty) \) - **Product (\( fg \)):** \( 5x^2 + 38x + 48 \) **Domain:** All real numbers **Option:** B. \( (-\infty, \infty) \) - **Quotient (\( \frac{f}{g} \)):** \( \frac{5x + 8}{x + 6} \) **Domain:** All real numbers except \( x = -6 \) **Option:** C. \( (-\infty, -6) \cup (-6, \infty) \)

Solución

Let's analyze the functions \( f(x) = 5x + 8 \) and \( g(x) = x + 6 \), and determine their sum, difference, product, and quotient along with their domains. ### 1. Sum: \( f + g \) \[ (f + g)(x) = (5x + 8) + (x + 6) = 6x + 14 \] **Domain:** Both \( f(x) \) and \( g(x) \) are defined for all real numbers. Therefore, the domain of \( f + g \) is: \[ (-\infty, \infty) \] ### 2. Difference: \( f - g \) \[ (f - g)(x) = (5x + 8) - (x + 6) = 4x + 2 \] **Domain:** Both \( f(x) \) and \( g(x) \) are defined for all real numbers. Therefore, the domain of \( f - g \) is: \[ (-\infty, \infty) \] **Correct Option:** - **A.** The domain of \( f - g \) is \( (-\infty, \infty) \). ### 3. Product: \( fg \) \[ (fg)(x) = (5x + 8)(x + 6) = 5x^2 + 38x + 48 \] **Domain:** Both \( f(x) \) and \( g(x) \) are defined for all real numbers. Therefore, the domain of \( fg \) is: \[ (-\infty, \infty) \] **Correct Option:** - **B.** The domain of \( fg \) is \( (-\infty, \infty) \). ### 4. Quotient: \( \frac{f}{g} \) \[ \left(\frac{f}{g}\right)(x) = \frac{5x + 8}{x + 6} \] **Domain:** The function \( g(x) \) cannot be zero to avoid division by zero. Therefore, \( x + 6 \neq 0 \) which implies \( x \neq -6 \). Thus, the domain is: \[ (-\infty, -6) \cup (-6, \infty) \] ### Summary of Domains: - **\( f + g \):** \( (-\infty, \infty) \) - **\( f - g \):** \( (-\infty, \infty) \) **[Option A]** - **\( fg \):** \( (-\infty, \infty) \) **[Option B]** - **\( \frac{f}{g} \):** \( (-\infty, -6) \cup (-6, \infty) \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find \( f + g, f - g, fg, \) and \( \frac{f}{g} \), let’s start with the functions given: 1. For \( (f + g)(x) \): \[ f + g = (5x + 8) + (x + 6) = 6x + 14 \] 2. For \( (f - g)(x) \): \[ f - g = (5x + 8) - (x + 6) = 5x + 8 - x - 6 = 4x + 2 \] 3. For \( (fg)(x) \): \[ fg = (5x + 8)(x + 6) = 5x^2 + 30x + 8x + 48 = 5x^2 + 38x + 48 \] 4. For \( \frac{f}{g} \): \[ \frac{f}{g} = \frac{5x + 8}{x + 6} \] Now let's determine the domains. ### Domain of \( f - g \): Since both \( f(x) \) and \( g(x) \) are polynomials, their difference \( f - g \) is also a polynomial, which is defined for all real numbers. Thus, the domain of \( f-g \) is \( (-\infty, \infty) \) (Answer A). ### Domain of \( fg \): Similarly, since \( fg \) is also a polynomial, it is defined for all real numbers. Thus, the domain of \( fg \) is \( (-\infty, \infty) \) (Answer B). So, the final answers for the domains are: - Domain of \( f-g \): \( (-\infty, \infty) \) - Domain of \( fg \): \( (-\infty, \infty) \)

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad