Pregunta
upstudy study bank question image url

Parents wish to have \( \$ 150,000 \) available for a child's education. If the child is now 7 years old, how much money must be set aside at \( 4 \% \) compounded semiannually to meet their financial goal when the child is 18 ?

Ask by Ingram Reeves. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

You need to set aside approximately \$97,000 today at a 4% annual interest rate compounded semiannually to have \$150,000 available for your child's education in 11 years.

Solución

To determine how much money needs to be set aside today to accumulate \( \$150,000 \) for your child's education in 11 years (from age 7 to age 18) with an annual interest rate of \( 4\% \) compounded semiannually, you can use the **Present Value (PV)** formula for compound interest: \[ PV = \frac{FV}{(1 + r)^n} \] Where: - \( PV \) = Present Value (the amount to set aside today) - \( FV \) = Future Value (\$150,000) - \( r \) = Periodic interest rate (annual rate divided by the number of compounding periods per year) - \( n \) = Total number of compounding periods **Step-by-Step Calculation:** 1. **Determine the periodic interest rate (\( r \)) and the total number of periods (\( n \)):** - **Annual Interest Rate:** \( 4\% \) - **Compounded Semiannually:** \( 2 \) times per year - **Periodic Interest Rate (\( r \)):** \[ r = \frac{4\%}{2} = 2\% = 0.02 \text{ per period} \] - **Time Frame:** \( 11 \) years - **Total Number of Periods (\( n \)):** \[ n = 11 \text{ years} \times 2 \text{ periods/year} = 22 \text{ periods} \] 2. **Calculate the Present Value (\( PV \)):** \[ PV = \frac{150,000}{(1 + 0.02)^{22}} = \frac{150,000}{(1.02)^{22}} \] 3. **Compute \((1.02)^{22}\):** \[ (1.02)^{22} \approx 1.5462 \] 4. **Final Calculation:** \[ PV \approx \frac{150,000}{1.5462} \approx 97,000 \] **Conclusion:** You need to set aside approximately **\$97,000** today at a \( 4\% \) annual interest rate compounded semiannually to have \( \$150,000 \) available for your child's education in 11 years. **Summary:** Set aside approximately \$97 000 today at 4 % compounded semiannually to reach $150 000 in 11 years.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find out how much money must be set aside now, we can use the formula for the present value of a future sum: \[ PV = \frac{FV}{(1 + r/n)^{nt}} \] Where: - \(PV\) is the present value (amount to set aside now) - \(FV\) is the future value (\$150,000) - \(r\) is the annual interest rate (0.04) - \(n\) is the number of times the interest is compounded per year (2 for semiannually) - \(t\) is the number of years until the goal (11 years, since the child is currently 7 and will be 18 in 11 years) Substituting the values into the formula: \[ PV = \frac{150,000}{(1 + 0.04/2)^{2 \cdot 11}} = \frac{150,000}{(1 + 0.02)^{22}} = \frac{150,000}{(1.02)^{22}} \] Calculating \((1.02)^{22}\): \[ (1.02)^{22} \approx 1.485947 \] Now substituting back into the formula: \[ PV = \frac{150,000}{1.485947} \approx 100,893.56 \] So, the parents must set aside approximately **$100,893.56** today to have **$150,000** available for their child's education when he or she turns 18. --- To make it easier to understand, think of saving this amount as planting a money tree! You water it (by investing your initial amount) and let it grow over time with interest. By the time your kiddo heads off to college, you'll be sitting pretty under the shade of that tree with all the funds you need! Also, don’t forget to account for tuition increases! Always round up in your planning. Consider inflation, schools are getting pricier, and what’s $150,000 today may not stretch as far in 11 years. So, keep adding a little cushion to your savings plan!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad