The functions \( f \) and \( g \) are defined as follows. \[ f(x)=\frac{x+8}{x^{2}-64} \] \[ g(x)=\frac{x}{x^{2}+1} \] For each function, find the domain. Write each answer as an interval or union of intervals. \begin{tabular}{|l|l|l|l|}\hline Domain of \( f: \square \) & {\( [\square, \square) \)} & \( \square \) & \( \square \cup \square \) \\ \hline & \( (\square, \square) \) & {\( [\square, \square] \)} & \( (\square, \square] \) \\ \hline\end{tabular}
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the domain of the functions \( f(x) \) and \( g(x) \), we need to identify any values of \( x \) that would make the functions undefined. For \( f(x) = \frac{x+8}{x^2-64} \): 1. The denominator \( x^2 - 64 \) must not be zero. Solving \( x^2 - 64 = 0 \) gives \( x^2 = 64 \) or \( x = \pm 8 \). 2. Thus, the domain excludes \( x = 8 \) and \( x = -8\). The domain of \( f \) in interval notation is: \[ (-\infty, -8) \cup (-8, 8) \cup (8, \infty) \] For \( g(x) = \frac{x}{x^2+1} \): 1. The denominator \( x^2 + 1 \) is always positive since \( x^2 \) is non-negative for all \( x \), and thus \( x^2 + 1 \) is never zero. So the domain of \( g \) is all real numbers: \[ (-\infty, \infty) \] Putting the answers in the specified format, we have: Domain of \( f: (-\infty, -8) \cup (-8, 8) \cup (8, \infty) \) & \( [\text{Interval: } -8, -8] \) & \( \infty \) & \( (-\infty, \infty) \) \\ \hline \( \) & \( (-\infty, -8) \) & \( [\infty] \) & \( \infty \) \\ \hline