Pregunta
upstudy study bank question image url

A new car is purchased for 15500 dollars. The value of the car depreciates at \( 7.5 \% \) per year. What will the value of the car be, to the nearest cent, after 6 years?

Ask by Campbell Watkins. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The car will be worth approximately $9,709.17 after 6 years.

Solución

To find the value of the car after 6 years, we can use the formula for depreciation: \[ \text{Value after depreciation} = \text{Initial value} \times (1 - \text{Depreciation rate})^{\text{Number of years}} \] Given: - Initial value of the car = $15500 - Depreciation rate = 7.5% per year - Number of years = 6 years Substitute the values into the formula: \[ \text{Value after depreciation} = 15500 \times (1 - 0.075)^6 \] Now, we can calculate the value of the car after 6 years. Calculate the value by following steps: - step0: Calculate: \(15500\left(1-0.075\right)^{6}\) - step1: Subtract the numbers: \(15500\times 0.925^{6}\) - step2: Convert the expressions: \(15500\left(\frac{37}{40}\right)^{6}\) - step3: Simplify: \(15500\times \frac{37^{6}}{40^{6}}\) - step4: Rewrite the expression: \(20\times 775\times \frac{37^{6}}{40^{6}}\) - step5: Rewrite the expression: \(20\times 775\times \frac{37^{6}}{20^{6}\times 2^{6}}\) - step6: Reduce the numbers: \(775\times \frac{37^{6}}{20^{5}\times 2^{6}}\) - step7: Rewrite the expression: \(25\times 31\times \frac{37^{6}}{20^{5}\times 2^{6}}\) - step8: Rewrite the expression: \(25\times 31\times \frac{37^{6}}{5^{5}\times 4^{5}\times 2^{6}}\) - step9: Rewrite the expression: \(5^{2}\times 31\times \frac{37^{6}}{5^{5}\times 4^{5}\times 2^{6}}\) - step10: Reduce the numbers: \(31\times \frac{37^{6}}{5^{3}\times 4^{5}\times 2^{6}}\) - step11: Multiply: \(\frac{31\times 37^{6}}{8192000}\) The value of the car after 6 years will be approximately $9709.17 to the nearest cent.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine the value of the car after 6 years, we start with the initial value of $15,500 and apply the depreciation rate. The formula for depreciation is: Value = Initial Price × (1 - Depreciation Rate) ^ Number of Years. Plugging in the numbers: Value = $15,500 × (1 - 0.075) ^ 6 Value = $15,500 × (0.925) ^ 6 Value ≈ $15,500 × 0.5743 Value ≈ $8,900.65. So, the value of the car after 6 years will be approximately $8,900.65. --- Did you know that car depreciation varies by make and model? For example, luxury cars often depreciate faster than economy models! This is due to factors like brand popularity and market demand. So, if you're ever in the market for a new car, consider researching the projected depreciation rates—it could save you some serious cash in the long run! Another interesting tidbit is that depreciation isn't just a car thing; it applies to many assets. Businesses often use depreciation to account for the wear and tear of their equipment over time. This not only helps them keep accurate financial records but also affects tax liabilities! Understanding how depreciation works can be a game-changer for managing personal finances or running a business effectively.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad