Pregunta
upstudy study bank question image url

If \( \$ 450 \) are deposited into an account with a \( 8.5 \% \) interest rate, compounded annually, what is the balance after 9 years? \[ F=\$[?] \] \( F=P\left(1+\frac{r}{n}\right)^{n t} \)

Ask by Chang Bowers. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The balance after 9 years is approximately $937.74.

Solución

To find the balance after 9 years, we can use the formula for compound interest: \[ F = P\left(1 + \frac{r}{n}\right)^{nt} \] Given: - Principal amount (\( P \)) = $450 - Interest rate (\( r \)) = 8.5% = 0.085 - Compounding frequency (\( n \)) = 1 (compounded annually) - Time (\( t \)) = 9 years Substitute the given values into the formula: \[ F = 450\left(1 + \frac{0.085}{1}\right)^{1 \times 9} \] Now, we can calculate the balance after 9 years. Calculate the value by following steps: - step0: Calculate: \(450\left(1+0.085\right)^{9}\) - step1: Add the numbers: \(450\times 1.085^{9}\) - step2: Convert the expressions: \(450\left(\frac{217}{200}\right)^{9}\) - step3: Simplify: \(450\times \frac{217^{9}}{200^{9}}\) - step4: Rewrite the expression: \(50\times 9\times \frac{217^{9}}{200^{9}}\) - step5: Rewrite the expression: \(50\times 9\times \frac{217^{9}}{50^{9}\times 4^{9}}\) - step6: Reduce the numbers: \(9\times \frac{217^{9}}{50^{8}\times 4^{9}}\) - step7: Multiply the fractions: \(\frac{9\times 217^{9}}{50^{8}\times 4^{9}}\) The balance after 9 years is approximately $937.74.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the future balance using the formula \( F = P\left(1 + \frac{r}{n}\right)^{nt} \), substitute \( P = 450 \), \( r = 0.085 \), \( n = 1 \), and \( t = 9 \). This simplifies to \( F = 450\left(1 + 0.085\right)^{9} \). Calculating this gives \( F = 450(1.085)^{9} \approx 450 \times 2.1205 \approx 954.23 \). So, the balance after 9 years will be approximately \( F=\$954.23 \). Have you ever wondered how compounding works? The magic of compounding interest means that your money earns interest on both the initial amount and the interest that has previously been added. In simpler terms, with each year, you’re not just earning interest on your principal amount; you’re also earning on the accumulated interest from previous years, which can significantly increase your investment over time! In real life, this principle of compounding applies to various financial products, including savings accounts, mutual funds, and retirement plans. Understanding how to leverage this power can help you grow your savings or investments more effectively. For instance, by regularly contributing even a small percentage to your retirement fund, you can watch your savings soar thanks to the compound interest that accumulates over the years!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad