Evaluate the integral using any appropriate algebraic method or trigonometric identity. \( \int \frac{d \mathrm{x}}{25 e^{-9 \mathrm{x}}+e^{9 x}} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To evaluate the integral \( \int \frac{d \mathrm{x}}{25 e^{-9 \mathrm{x}} + e^{9 \mathrm{x}}} \), we can start by simplifying the integrand. We can rewrite the expression inside the integral: \[ \int \frac{d \mathrm{x}}{25 e^{-9 \mathrm{x}} + e^{9 \mathrm{x}}} = \int \frac{e^{9\mathrm{x}} d\mathrm{x}}{25 + e^{18\mathrm{x}}} \] This allows us to use the substitution \( u = e^{9x} \), so \( du = 9 e^{9x} dx \) or \( dx = \frac{du}{9u} \). Substituting these into the integral gives: \[ = \int \frac{u^{1/9}}{25 + u^2} \cdot \frac{du}{9u} \] This simplifies to: \[ = \frac{1}{9} \int \frac{1}{25 + u^2} du \] The integral \( \int \frac{1}{a^2 + u^2} du \) is a standard result that is equal to \( \frac{1}{a} \tan^{-1}(\frac{u}{a}) + C \), where \( a = 5 \) here. Therefore: \[ = \frac{1}{9} \cdot \frac{1}{5} \tan^{-1}\left(\frac{u}{5}\right) + C \] Now we substitute back \( u = e^{9x} \): \[ = \frac{1}{45} \tan^{-1}\left(\frac{e^{9x}}{5}\right) + C \] Thus, the final result for the integral is: \[ \int \frac{d \mathrm{x}}{25 e^{-9 \mathrm{x}}+e^{9 \mathrm{x}}} = \frac{1}{45} \tan^{-1}\left(\frac{e^{9x}}{5}\right) + C \]