Pregunta
upstudy study bank question image url

11 12 13 14 15 16 17 18 19 Which of the following is a radical equation? \( x+\sqrt{5}=12 \) \( x^{2}=16 \) \( 3+x \sqrt{7}=13 \)

Ask by Carrillo Little. in the United States
Jan 21,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

None of the equations are radical equations because the variable does not appear inside a radical.

Solución

A **radical equation** is one in which the variable appears inside a radical (such as a square root, cube root, etc.). Let's examine each of the provided equations: 1. **\( x + \sqrt{5} = 12 \)** - Here, \( x \) is **not** inside a radical. The equation involves adding a constant radical (\( \sqrt{5} \)) to the variable \( x \), but the variable itself is not under the radical sign. 2. **\( x^{2} = 16 \)** - This is a **quadratic equation**, not a radical equation. The variable \( x \) is raised to a power, but it is not inside a radical. 3. **\( 3 + x \sqrt{7} = 13 \)** - In this equation, \( x \) is multiplied by \( \sqrt{7} \), but again, \( x \) is **not** inside the radical. The radical is applied only to the constant \( 7 \), not to the variable \( x \). **Conclusion:** None of the provided equations are radical equations because the variable does not appear inside a radical. A classic example of a radical equation would be something like \( \sqrt{x} + 2 = 5 \), where \( x \) is directly under the square root. **Answer:** None of the given equations qualify as a radical equation because the variable does not appear inside a radical.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

A radical equation features a variable inside a radical, such as a square root or cube root. In the examples given, the equation \( x + \sqrt{5} = 12 \) and \( 3 + x \sqrt{7} = 13 \) include radicals. For the equation \( 3 + x \sqrt{7} = 13 \), if you isolate the radical and set it equal to an expression involving \( x \), you'll find a solution that involves taking the square root of an expression. These types of equations often require squaring both sides to eliminate the radical, leading to extra solutions you need to check! Understanding how to handle radical equations is essential because mistakes in simplifying or isolating radicals can introduce extraneous solutions. It’s a common pitfall to forget to check your answers after solving, particularly since squaring both sides of an equation can create solutions that aren't valid in the original equation. Always plug your results back into the original equation to confirm they work!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad