Pregunta
Simplify and classify the result as rational or irrationa \( \sqrt{8} \)
Ask by Mcguire Wheeler. in South Africa
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( \sqrt{8} = 2\sqrt{2} \) (Irrational)
Solución
To simplify and classify the expression \( \sqrt{8} \):
### **Simplification:**
\[
\sqrt{8} = \sqrt{4 \times 2} = \sqrt{4} \times \sqrt{2} = 2\sqrt{2}
\]
### **Classification:**
- **Rational or Irrational?**
The number \( \sqrt{2} \) is **irrational**, meaning it cannot be expressed as a fraction of two integers. Multiplying an irrational number by a rational number (in this case, 2) results in an **irrational** number.
Therefore, \( 2\sqrt{2} \) is **irrational**.
### **Final Answer:**
\[
\sqrt{8} = 2\sqrt{2} \quad \text{(Irrational)}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To simplify \( \sqrt{8} \), we can break it down into its prime factors: \( \sqrt{8} = \sqrt{4 \times 2} = \sqrt{4} \times \sqrt{2} = 2\sqrt{2} \). So, the simplified form is \( 2\sqrt{2} \). Now, let's classify it: Since \( \sqrt{2} \) is an irrational number, multiplying it by 2 still results in an irrational number. Therefore, \( \sqrt{8} \) is classified as irrational.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium