Pregunta
Divide. Leave your answer in exponent form. Assume that all variables in any denominator are nonzero. \( \frac{110 x^{5} y^{3}}{55 x^{2} y^{7}} \)
Ask by Schmidt Ramirez. in the United States
Jan 21,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The simplified form is \( \frac{2x^{3}}{y^{4}} \).
Solución
Calculate or simplify the expression \( \frac{110x^5y^3}{55x^2y^7} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{110x^{5}y^{3}}{55x^{2}y^{7}}\)
- step1: Simplify the expression:
\(\frac{110x^{5-2}y^{3}}{55y^{7}}\)
- step2: Calculate:
\(\frac{110x^{3}y^{3}}{55y^{7}}\)
- step3: Simplify the expression:
\(\frac{110x^{3}}{55y^{7-3}}\)
- step4: Calculate:
\(\frac{110x^{3}}{55y^{4}}\)
- step5: Calculate:
\(\frac{2x^{3}}{y^{4}}\)
The result of dividing \( \frac{110 x^{5} y^{3}}{55 x^{2} y^{7}} \) is \( \frac{2x^{3}}{y^{4}} \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To divide the coefficients and the variables, start with the coefficients: \( \frac{110}{55} = 2 \). Now, divide the variable expressions: For \( x \), subtract the exponents: \( x^{5 - 2} = x^{3} \). For \( y \), again subtract the exponents: \( y^{3 - 7} = y^{-4} \). Putting it all together, we have: \[ 2 x^{3} y^{-4} \] In exponent form, it can also be rewritten as: \[ 2 x^{3} \frac{1}{y^{4}} \quad \text{or} \quad \frac{2 x^{3}}{y^{4}} \] So the final answer is \( 2 x^{3} y^{-4} \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium