Pregunta

Given the points \( A(3 ; 5), B(0 ;-1), C(-8 ; 3) \) and \( D(-4 ; n) \), solve for a) \( A B \) is parallel to \( C D \) b) \( A B \) is perpendicular to \( C D \) \( D \) is the midpoint of \( B C \).

Ask by Parry Santiago. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( n = 11 \) for part a, \( n = 1 \) for part b, and \( n = 1 \) for part c.

Solución

Let's analyze each part of the problem step by step. ### Given Points: - \( A(3, 5) \) - \( B(0, -1) \) - \( C(-8, 3) \) - \( D(-4, n) \) ### a) \( AB \) is parallel to \( CD \) **Vectors:** - **Vector \( \overrightarrow{AB} \):** \[ \overrightarrow{AB} = B - A = (0 - 3, -1 - 5) = (-3, -6) \] - **Vector \( \overrightarrow{CD} \):** \[ \overrightarrow{CD} = D - C = (-4 - (-8), n - 3) = (4, n - 3) \] **Condition for Parallelism:** Two vectors are parallel if one is a scalar multiple of the other. So, \[ \overrightarrow{AB} = k \cdot \overrightarrow{CD} \] \[ (-3, -6) = k \cdot (4, n - 3) \] This gives us the system of equations: \[ -3 = 4k \quad \text{and} \quad -6 = k(n - 3) \] **Solving for \( k \):** \[ k = \frac{-3}{4} \] **Substitute \( k \) into the second equation:** \[ -6 = \left(\frac{-3}{4}\right)(n - 3) \] \[ -6 = \frac{-3}{4}n + \frac{9}{4} \] \[ -6 - \frac{9}{4} = \frac{-3}{4}n \] \[ -\frac{33}{4} = \frac{-3}{4}n \] \[ n = 11 \] **Answer for part a:** \( n = 11 \) --- ### b) \( AB \) is perpendicular to \( CD \) **Condition for Perpendicularity:** Two vectors are perpendicular if their dot product is zero. \[ \overrightarrow{AB} \cdot \overrightarrow{CD} = 0 \] \[ (-3)(4) + (-6)(n - 3) = 0 \] \[ -12 - 6n + 18 = 0 \] \[ 6 - 6n = 0 \] \[ 6n = 6 \] \[ n = 1 \] **Answer for part b:** \( n = 1 \) --- ### c) \( D \) is the midpoint of \( BC \) **Midpoint Formula:** The midpoint \( D \) of points \( B(x_1, y_1) \) and \( C(x_2, y_2) \) is: \[ D\left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \] **Applying to Points \( B(0, -1) \) and \( C(-8, 3) \):** \[ D\left( \frac{0 + (-8)}{2}, \frac{-1 + 3}{2} \right) = D(-4, 1) \] Since \( D(-4, n) \), we have: \[ n = 1 \] **Answer for part c:** \( n = 1 \) ### Summary of Solutions: - **a)** \( n = 11 \) - **b)** \( n = 1 \) - **c)** \( n = 1 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine the value of \( n \) in the point \( D(-4; n) \) based on the given conditions, let's break down each part. ### a) \( AB \) is parallel to \( CD \) Two lines are parallel if their slopes are equal. First, we will find the slopes of lines \( AB \) and \( CD \). 1. **Finding slope of line \( AB \)**: - Points: \( A(3, 5) \) and \( B(0, -1) \) - Slope formula: \( m = \frac{y_2 - y_1}{x_2 - x_1} \) - Slope of \( AB \): \[ m_{AB} = \frac{-1 - 5}{0 - 3} = \frac{-6}{-3} = 2 \] 2. **Finding slope of line \( CD \)**: - Points: \( C(-8, 3) \) and \( D(-4, n) \) - Slope of \( CD \): \[ m_{CD} = \frac{n - 3}{-4 + 8} = \frac{n - 3}{4} \] 3. **Setting slopes equal for parallelism**: \[ 2 = \frac{n - 3}{4} \] \[ 8 = n - 3 \] \[ n = 11 \] ### b) \( AB \) is perpendicular to \( CD \) Two lines are perpendicular if the product of their slopes equals -1. 1. **Using the slope of \( AB \)**: \[ m_{AB} = 2 \] 2. **Setting the product of the slopes equal to -1**: \[ 2 \cdot \frac{n - 3}{4} = -1 \] \[ \frac{n - 3}{2} = -1 \] \[ n - 3 = -2 \] \[ n = 1 \] ### Midpoint Condition Finally, we find \( D \) as the midpoint of \( BC \). The midpoint \( M \) of points \( B(0, -1) \) and \( C(-8, 3) \) is: \[ M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = \left(\frac{0 - 8}{2}, \frac{-1 + 3}{2}\right) = \left(-4, 1\right) \] So, for \( D \) to be the midpoint, \( n \) must be \( 1 \). ### Summary: - For \( AB \) parallel to \( CD \): \( n = 11 \) - For \( AB \) perpendicular to \( CD \): \( n = 1 \) - \( D \) as the midpoint of \( BC \): \( n = 1 \) Thus, **the values of \( n \)** depend on the conditions: - Parallel condition gives \( n = 11 \) - Perpendicular and midpoint conditions both give \( n = 1 \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad