Given the points \( A(3 ; 5), B(0 ;-1), C(-8 ; 3) \) and \( D(-4 ; n) \), solve for a) \( A B \) is parallel to \( C D \) b) \( A B \) is perpendicular to \( C D \) \( D \) is the midpoint of \( B C \).
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To determine the value of \( n \) in the point \( D(-4; n) \) based on the given conditions, let's break down each part. ### a) \( AB \) is parallel to \( CD \) Two lines are parallel if their slopes are equal. First, we will find the slopes of lines \( AB \) and \( CD \). 1. **Finding slope of line \( AB \)**: - Points: \( A(3, 5) \) and \( B(0, -1) \) - Slope formula: \( m = \frac{y_2 - y_1}{x_2 - x_1} \) - Slope of \( AB \): \[ m_{AB} = \frac{-1 - 5}{0 - 3} = \frac{-6}{-3} = 2 \] 2. **Finding slope of line \( CD \)**: - Points: \( C(-8, 3) \) and \( D(-4, n) \) - Slope of \( CD \): \[ m_{CD} = \frac{n - 3}{-4 + 8} = \frac{n - 3}{4} \] 3. **Setting slopes equal for parallelism**: \[ 2 = \frac{n - 3}{4} \] \[ 8 = n - 3 \] \[ n = 11 \] ### b) \( AB \) is perpendicular to \( CD \) Two lines are perpendicular if the product of their slopes equals -1. 1. **Using the slope of \( AB \)**: \[ m_{AB} = 2 \] 2. **Setting the product of the slopes equal to -1**: \[ 2 \cdot \frac{n - 3}{4} = -1 \] \[ \frac{n - 3}{2} = -1 \] \[ n - 3 = -2 \] \[ n = 1 \] ### Midpoint Condition Finally, we find \( D \) as the midpoint of \( BC \). The midpoint \( M \) of points \( B(0, -1) \) and \( C(-8, 3) \) is: \[ M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = \left(\frac{0 - 8}{2}, \frac{-1 + 3}{2}\right) = \left(-4, 1\right) \] So, for \( D \) to be the midpoint, \( n \) must be \( 1 \). ### Summary: - For \( AB \) parallel to \( CD \): \( n = 11 \) - For \( AB \) perpendicular to \( CD \): \( n = 1 \) - \( D \) as the midpoint of \( BC \): \( n = 1 \) Thus, **the values of \( n \)** depend on the conditions: - Parallel condition gives \( n = 11 \) - Perpendicular and midpoint conditions both give \( n = 1 \)