Pregunta
upstudy study bank question image url

The areas of two plates have a ratio of \( 9: 16 \). The smaller plate has an area of \( 36 \pi \) square inches. a. What is the ratio of the radius of the smaller plate to the radius of the larger plate? b. What is the radius of the larger plate?

Ask by Bowen Cox. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Simplified Answers:** a. The ratio of the radius of the smaller plate to the radius of the larger plate is **3:4**. b. The radius of the larger plate is **8 inches**.

Solución

Let's solve the problem step by step. ### Given: - **Ratio of Areas:** \( 9 : 16 \) - **Area of Smaller Plate:** \( 36\pi \) square inches ### Part a: Ratio of the Radii **Understanding the Relationship Between Area and Radius:** For a circular plate, the area \( A \) is related to its radius \( r \) by the formula: \[ A = \pi r^2 \] If we have two plates with radii \( r_1 \) and \( r_2 \), and their areas are in the ratio \( 9 : 16 \), then: \[ \frac{A_1}{A_2} = \frac{\pi r_1^2}{\pi r_2^2} = \frac{r_1^2}{r_2^2} = \frac{9}{16} \] Taking the square root of both sides to find the ratio of the radii: \[ \frac{r_1}{r_2} = \sqrt{\frac{9}{16}} = \frac{3}{4} \] **Answer to Part a:** \[ \text{Ratio of radii (smaller : larger)} = 3 : 4 \] ### Part b: Radius of the Larger Plate **Given:** \[ A_1 = 36\pi \text{ square inches} \] Using the area formula: \[ 36\pi = \pi r_1^2 \implies r_1^2 = 36 \implies r_1 = 6 \text{ inches} \] From Part a, we know: \[ \frac{r_1}{r_2} = \frac{3}{4} \implies r_2 = \frac{4}{3} r_1 = \frac{4}{3} \times 6 = 8 \text{ inches} \] **Answer to Part b:** \[ \text{Radius of the larger plate} = 8 \text{ inches} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the radius ratio, we know that the area \( A \) of a circle is given by \( A = \pi r^2 \). Given that the area ratio of the two plates is \( 9:16 \), we can express the areas as \( A_1 = 9k \) and \( A_2 = 16k \) for some constant \( k \). The smaller plate's area is \( 36\pi \), corresponding to \( A_1 = 36\pi \). Thus, we set up the equation: \[ 9k = 36\pi \implies k = 4\pi \] Now, for the larger plate's area: \[ A_2 = 16k = 16(4\pi) = 64\pi \] Next, we find the radii. Using the area formula, we find the radius of the smaller plate: \[ A_1 = \pi r_1^2 \implies 36\pi = \pi r_1^2 \implies r_1^2 = 36 \implies r_1 = 6 \] And for the larger plate: \[ A_2 = \pi r_2^2 \implies 64\pi = \pi r_2^2 \implies r_2^2 = 64 \implies r_2 = 8 \] Now we can determine the ratio of the radii: \[ \frac{r_1}{r_2} = \frac{6}{8} = \frac{3}{4} \] Thus, the ratio of the radius of the smaller plate to the radius of the larger plate is \( \frac{3}{4} \) (part a). For part (b), the radius of the larger plate has been calculated as \( 8 \) inches. In summary: a. The ratio of the radius of the smaller plate to the radius of the larger plate is \( \frac{3}{4} \). b. The radius of the larger plate is \( 8 \) inches.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad