Find the solution set for the following inequality.
\[ |9+2 x|>0 \]
Select the correct choice below and, if necessary, fill in the answer box to complete your choic
A. The solution set is \( \{x \mid x<\square \) or \( x>\square\} \).
(Type integers or simplified fractions.)
B. The solution set is \( \{x \mid \square
Ask by Howell Flynn. in the United States
Feb 04,2025
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To solve the inequality \( |9+2x| > 0 \), we first note that an absolute value is greater than zero when the expression inside it is not equal to zero. Therefore, we solve for when \( 9 + 2x \neq 0 \). Setting the expression equal to zero gives: \[ 9 + 2x = 0 \] \[ 2x = -9 \] \[ x = -\frac{9}{2} \] Since the absolute value is only zero at \( x = -\frac{9}{2} \), the solution set for \( |9 + 2x| > 0 \) is all real numbers except \( -\frac{9}{2} \). Thus, we can express this solution set as: C. The solution set is all real numbers except \( x = -\frac{9}{2} \), which may be formally stated as: \[ \{x \mid x < -\frac{9}{2}\} \text{ or } \{x \mid x > -\frac{9}{2}\} \] Based on this analysis, the correct answer is: A. The solution set is \( \{x \mid x < -\frac{9}{2}\} \text{ or } \{x \mid x > -\frac{9}{2}\} \).