Pregunta
upstudy study bank question image url

8. \( \mathrm{d}=3.5 \mathrm{t} \)

Ask by Klein Nunez. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation \( \mathrm{d} = 3.5 \, \mathrm{t} \) shows that distance (\(\mathrm{d}\)) is 3.5 times time (\(\mathrm{t}\)). This means the speed is 3.5 units per time unit.

Solución

Certainly! Let's analyze and understand the equation you've provided: \[ \mathrm{d} = 3.5 \, \mathrm{t} \] ### Understanding the Equation This equation represents a **linear relationship** between two variables: - **\(\mathrm{d}\)**: Typically denotes **distance**. - **\(\mathrm{t}\)**: Typically denotes **time**. - **3.5**: This is the **rate** at which the distance changes with respect to time. In many contexts, this could represent **speed**. ### Possible Context Assuming **\(\mathrm{d}\)** is distance and **\(\mathrm{t}\)** is time, the equation can be interpreted as: \[ \text{Distance} = \text{Speed} \times \text{Time} \] Here, the **speed** is **3.5 units per time unit** (e.g., kilometers per hour, meters per second, etc., depending on the context). ### Solving for One Variable in Terms of the Other 1. **If you want to find the distance (\(\mathrm{d}\)) traveled in a given time (\(\mathrm{t}\)):** \[ \mathrm{d} = 3.5 \, \mathrm{t} \] - **Example**: If \( \mathrm{t} = 2 \) hours, \[ \mathrm{d} = 3.5 \times 2 = 7 \text{ units} \] 2. **If you want to find the time (\(\mathrm{t}\)) it takes to travel a certain distance (\(\mathrm{d}\)):** To solve for \( \mathrm{t} \), divide both sides of the equation by 3.5: \[ \mathrm{t} = \frac{\mathrm{d}}{3.5} \] - **Example**: If \( \mathrm{d} = 10 \) kilometers, \[ \mathrm{t} = \frac{10}{3.5} \approx 2.857 \text{ hours} \] ### Graphical Representation If you graph this equation with: - **Horizontal Axis (x-axis)**: Time (\(\mathrm{t}\)) - **Vertical Axis (y-axis)**: Distance (\(\mathrm{d}\)) The graph will be a straight line passing through the origin (0,0) with a slope of **3.5**. This slope represents the constant speed. ### Applications Such linear equations are fundamental in various fields, including: - **Physics**: Calculating distance traveled over time at constant speed. - **Economics**: Modeling costs that increase linearly with production levels. - **Engineering**: Predicting resource utilization over time. ### Summary - **Equation**: \( \mathrm{d} = 3.5 \, \mathrm{t} \) - **Interpretation**: Distance is directly proportional to time with a proportionality constant (speed) of 3.5 units per time unit. - **Solving for Distance**: Multiply the speed by time. - **Solving for Time**: Divide the distance by the speed. If you have a specific context or additional details related to this equation, feel free to share them, and I can provide a more tailored explanation!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that the equation \( d = 3.5t \) can represent a simple linear relationship between distance and time? In this case, the distance \( d \) is directly proportional to time \( t \), with a constant rate of 3.5 units per time interval. This means that for every unit of time, an object travels 3.5 units of distance—kind of like racing your friend on bikes and knowing exactly how far ahead you are getting! When working with this equation, a common mistake is failing to keep track of the units. Always make sure that your distance and time are in compatible units—like miles and hours or kilometers and minutes. It’s easy to say, “I traveled for 2 hours,” but if your speed was in kilometers per hour, you'll want to ensure your distance is calculated correctly to avoid confusion or embarrassing math fails!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad