Find the exact value of the expression. \[ \sin \frac{\pi}{6} \cos \frac{2 \pi}{3}-\cos \frac{\pi}{6} \sin \frac{2 \pi}{3} \] \( \sin \frac{\pi}{6} \cos \frac{2 \pi}{3}-\cos \frac{\pi}{6} \sin \frac{2 \pi}{3}=\square \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To evaluate the expression \[ \sin \frac{\pi}{6} \cos \frac{2 \pi}{3} - \cos \frac{\pi}{6} \sin \frac{2 \pi}{3}, \] we can use the sine subtraction formula: \[ \sin(a - b) = \sin a \cos b - \cos a \sin b. \] Letting \( a = \frac{\pi}{6} \) and \( b = \frac{2\pi}{3} \), we find that \[ \sin \left( \frac{\pi}{6} - \frac{2\pi}{3} \right) = \sin \left( \frac{\pi}{6} - \frac{4\pi}{6} \right) = \sin \left( -\frac{3\pi}{6} \right) = \sin \left( -\frac{\pi}{2} \right). \] The sine of \(-\frac{\pi}{2}\) is \[ -1. \] Thus, \[ \sin \frac{\pi}{6} \cos \frac{2 \pi}{3} - \cos \frac{\pi}{6} \sin \frac{2 \pi}{3} = -1. \] In conclusion, the value of the expression is \[ \boxed{-1}. \]