Pregunta
upstudy study bank question image url

Find the interval of convergence for the given power series.

The series is convergent on the interval:

Ask by Schwartz Lang. in the United States
Dec 14,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The interval of convergence is .

Solución

To find the interval of convergence for the power series
we can use the ratio test. The general term of the series is
We will apply the ratio test, which involves finding the limit of the absolute value of the ratio of consecutive terms:
Calculating :
Now, we compute the ratio:
Taking the absolute value:
Now, we take the limit as approaches infinity:
For the series to converge, we require:
Multiplying both sides by 4 gives:
This inequality can be rewritten as:
Adding 7 to all parts of the inequality results in:
Thus, the interval of convergence is .
Next, we need to check the endpoints and to determine if they are included in the interval of convergence.
  1. At :
This series diverges (harmonic series).
  1. At :
This series also diverges.
Since both endpoints do not converge, the interval of convergence is:

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the interval of convergence, we can use the ratio test. For the given series, we need to analyze the terms .
Applying the ratio test:
As , . Therefore:
For convergence, we require:
Multiplying through by (and flipping the inequalities):
This simplifies to:
Next, we should check the endpoints and :
  1. At :
This series diverges (harmonic series).
  1. At :
This series also diverges.
Thus the interval of convergence is .

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad