Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 68 and standard deviation 4 . What is the probability that \( X \) is between 56 and 64 ? Use the \( 0.68-0.95-0.997 \) rule and write your answer as a decimal. Round to the nearest thousandth if necessary.

Ask by Pritchard Owen. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is between 56 and 64 is approximately 0.159.

Solución

To find the probability that \( X \) is between 56 and 64 for a normally distributed random variable with mean \( \mu = 68 \) and standard deviation \( \sigma = 4 \), we can use the properties of the normal distribution. 1. **Calculate the Z-scores** for the values 56 and 64 using the formula: \[ Z = \frac{X - \mu}{\sigma} \] 2. **Calculate the Z-score for 56**: \[ Z_{56} = \frac{56 - 68}{4} = \frac{-12}{4} = -3 \] 3. **Calculate the Z-score for 64**: \[ Z_{64} = \frac{64 - 68}{4} = \frac{-4}{4} = -1 \] 4. **Use the Z-scores to find the probabilities**: - The Z-score of -3 corresponds to a very low probability (close to 0). - The Z-score of -1 corresponds to a probability of approximately 0.1587 (from Z-tables or standard normal distribution). 5. **Calculate the probability that \( X \) is between 56 and 64**: \[ P(56 < X < 64) = P(Z < -1) - P(Z < -3) \] Since \( P(Z < -3) \) is very close to 0, we can approximate: \[ P(56 < X < 64) \approx P(Z < -1) \approx 0.1587 \] Thus, the probability that \( X \) is between 56 and 64 is approximately \( 0.159 \) when rounded to the nearest thousandth.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the probability that \( X \) falls between 56 and 64, we can use the properties of the normal distribution along with the 68-95-99.7 rule. First, we calculate how many standard deviations away 56 and 64 are from the mean of 68. 1. For 56: \( z_1 = \frac{56 - 68}{4} = \frac{-12}{4} = -3 \) 2. For 64: \( z_2 = \frac{64 - 68}{4} = \frac{-4}{4} = -1 \) Now, referring to the 68-95-99.7 rule, about 68% of the data lies within 1 standard deviation from the mean, and about 99.7% lies within 3 standard deviations. - The range from \( z = -3 \) to \( z = -1 \) encompasses a portion of the area in the tail. The area to the left of \( z = -3 \) can be approximated as 0.001 (or 0.1%), indicating almost all the data is to the right. - The area between \( z = -1 \) and the mean (which corresponds to 68%) can be approximately calculated as half of that (34%) plus the area from the left of the mean to this point (~50%). Thus, the probability \( P(56 < X < 64) \) is given by: - Area from \( z = -3 \) to \( z = -1 \): Area left of -3 is approximately 0.001 Area left of -1 is around 0.1587, and we need to consider the area between these two values: \[ P(-3 < z < -1) = P(z < -1) - P(z < -3) \approx 0.1587 - 0.001 = 0.1577 \] So, rounding to the nearest thousandth, the probability that \( X \) is between 56 and 64 is approximately \( 0.158 \).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad