Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 11 and standard deviation 25 . What is the probability that \( X \) is between 36 and 61 ? Use the \( 0.68-0.95-0.997 \) rule and write your answer as a decimal. Round to the nearest thousandth if necessary.

Ask by Parsons Clarke. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability is 0.135.

Solución

To determine the probability that \( X \) is between 36 and 61 using the \( 0.68-0.95-0.997 \) (empirical) rule, follow these steps: 1. **Identify the Mean and Standard Deviation:** - Mean (\( \mu \)) = 11 - Standard Deviation (\( \sigma \)) = 25 2. **Convert the Given Values to Standard Deviations:** - \( 36 \) is \( \mu + 1\sigma \) (since \( 36 - 11 = 25 \)) - \( 61 \) is \( \mu + 2\sigma \) (since \( 61 - 11 = 50 \)) 3. **Apply the Empirical Rule:** - **68%** of the data lies within \( \mu \pm 1\sigma \), which is from \( -14 \) to \( 36 \). - **95%** of the data lies within \( \mu \pm 2\sigma \), which is from \( -39 \) to \( 61 \). 4. **Calculate the Probability Between \( 36 \) and \( 61 \):** - The area between \( \mu + 1\sigma \) and \( \mu + 2\sigma \) is the difference between 95% and 68%, divided by 2 (since the empirical rule is symmetric). - \( \frac{95\% - 68\%}{2} = \frac{27\%}{2} = 13.5\% \) 5. **Express as a Decimal:** - \( 13.5\% \) as a decimal is **0.135**. **Final Answer:** The probability is **0.135**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the probability that \( X \) is between 36 and 61, we can first standardize the values using the z-score formula: \[ z = \frac{(X - \mu)}{\sigma} \] where \( \mu = 11 \) (mean) and \( \sigma = 25 \) (standard deviation). Calculating the z-scores for 36 and 61: 1. For \( X = 36 \): \[ z = \frac{(36 - 11)}{25} = \frac{25}{25} = 1 \] 2. For \( X = 61 \): \[ z = \frac{(61 - 11)}{25} = \frac{50}{25} = 2 \] Now we look at the standard normal distribution and use the \( 0.68-0.95-0.997 \) rule. This rule tells us that: - About 68% of values lie within 1 standard deviation from the mean, - About 95% lie within 2 standard deviations, - About 99.7% lie within 3 standard deviations. Since we are looking for the probability between \( z = 1 \) and \( z = 2 \): - The probability between \( z = -1 \) and \( z = 1 \) is approximately 0.68 (68%), - The probability between \( z = -2 \) and \( z = 2 \) is approximately 0.95 (95%). To find the probability between \( z = 1 \) and \( z = 2 \), we can consider that the area between \( z = -2 \) and \( z = 2 \) encompasses the area between \( z = -1 \) and \( z = 1 \) as well. Thus, we can calculate: \[ P(1 < Z < 2) = P(-2 < Z < 2) - P(-1 < Z < 1) \] This gives us: \[ P(1 < Z < 2) = 0.95 - 0.68 = 0.27 \] Thus, the probability that \( X \) is between 36 and 61 is \( \approx 0.270 \).

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad