Pregunta
upstudy study bank question image url

Greg buys a home for \( \$ 328,500 \). His home is predicted to increase in value \( 4 \% \) each year. What is the predicted value of his home in 30 years? \( \$ 994,878 \) \( \$ 1,003,716 \) \( \$ 1,065,456 \) \( \$ 1,158,324 \) Question 21 (4 points) Andrew pays \( \$ 1824 \) per year in tuition. How much should he budget monthly for it? \( \$ 35 \) \( \$ 76 \) \( \$ 124 \)

Ask by Schwartz Harrington. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Greg's home will be worth approximately \$1,065,456 in 30 years. Andrew should budget \$152 monthly for tuition.

Solución

To find the predicted value of Greg's home in 30 years, we need to calculate the future value of the home using the formula for compound interest: \[ FV = PV \times (1 + r)^n \] where: - \( FV \) is the future value of the home, - \( PV \) is the present value of the home (initial cost), - \( r \) is the annual interest rate (4% in this case), - \( n \) is the number of years (30 years in this case). Given that the present value of the home is $328,500 and the annual interest rate is 4%, we can calculate the future value of the home in 30 years. To find out how much Andrew should budget monthly for tuition, we need to divide the annual tuition by 12 to get the monthly amount. Let's calculate the predicted value of Greg's home in 30 years and the monthly budget for Andrew's tuition. Calculate the value by following steps: - step0: Calculate: \(328500\left(1+0.04\right)^{30}\) - step1: Add the numbers: \(328500\times 1.04^{30}\) - step2: Convert the expressions: \(328500\left(\frac{26}{25}\right)^{30}\) - step3: Simplify: \(328500\times \frac{26^{30}}{25^{30}}\) - step4: Rewrite the expression: \(125\times 2628\times \frac{26^{30}}{25^{30}}\) - step5: Rewrite the expression: \(5^{3}\times 2628\times \frac{26^{30}}{5^{60}}\) - step6: Reduce the numbers: \(2628\times \frac{26^{30}}{5^{57}}\) - step7: Multiply: \(\frac{2628\times 26^{30}}{5^{57}}\) The predicted value of Greg's home in 30 years is approximately $1,065,456. Now, let's calculate the monthly budget for Andrew's tuition by dividing the annual tuition by 12. Calculate the value by following steps: - step0: Calculate: \(\frac{1824}{12}\) - step1: Reduce the numbers: \(\frac{152}{1}\) - step2: Calculate: \(152\) Andrew should budget $152 monthly for tuition.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the predicted value of Greg's home after 30 years with a 4% annual increase, you can use the formula for compound interest: \[ V = P(1 + r)^t \] where \( V \) is the future value, \( P \) is the present value (\$328,500), \( r \) is the annual increase rate (0.04), and \( t \) is the number of years (30). Plugging in the numbers gives: \[ V = 328,500(1 + 0.04)^{30} \approx 1,065,456 \] For Andrew's tuition, to find out how much he should budget monthly, simply divide the yearly amount by 12. Thus, \[ \frac{1824}{12} = 152 \] For the options given, the closest and most accurate monthly budget would be \$152, allowing him to comfortably manage his tuition payments!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad