Pregunta
upstudy study bank question image url

Question 1: The general expansion of \( (a+b)^{\wedge} n \) is given by: - A) \( a^{\wedge} n+b^{\wedge} n \) - B) \( \Sigma k=0^{\wedge} n n k a^{\wedge} n-k b^{\wedge} k \) - C) \( (a+b) \) - D) \( a+b \) Question 2 : In the binomial expansion of \( (x+2)^{\wedge} 3 \), what is the coefficient of \( x^{\wedge} 2 \) ? - A) 6 - B) 12 - C) 4 - D) 3 Question 3 : In the expansion

Ask by Mejia Harmon. in Nigeria
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Question 1:** The general expansion of \( (a+b)^n \) is: - **A)** \( a^n + b^n \) - **B)** \( \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \) - **C)** \( (a+b) \) - **D)** \( a+b \) **Answer:** **B)** **Question 2:** In the expansion of \( (x+2)^3 \), the coefficient of \( x^2 \) is: - **A)** 6 - **B)** 12 - **C)** 4 - **D)** 3 **Answer:** **A)** 6 **Question 3:** Please provide the complete question for assistance. **Summary:** - **Question 1:** The correct expansion is the Binomial Theorem (Option B). - **Question 2:** The coefficient of \( x^2 \) in \( (x+2)^3 \) is 6 (Option A). - **Question 3:** Additional information is needed to answer the question.

Solución

Sure, let's address each of your questions one by one. --- **Question 1:** *The general expansion of \( (a+b)^n \) is given by:* - **A)** \( a^n + b^n \) - **B)** \( \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \) - **C)** \( (a+b) \) - **D)** \( a+b \) **Answer:** **B)** The general expansion of \( (a+b)^n \) is given by the **Binomial Theorem**, which states: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] Here, \( \binom{n}{k} \) represents the binomial coefficient, calculated as \( \frac{n!}{k!(n-k)!} \). --- **Question 2:** *In the binomial expansion of \( (x+2)^3 \), what is the coefficient of \( x^2 \)?* - **A)** 6 - **B)** 12 - **C)** 4 - **D)** 3 **Answer:** **A)** 6 To find the coefficient of \( x^2 \) in the expansion of \( (x + 2)^3 \), we can use the Binomial Theorem: \[ (x + 2)^3 = \sum_{k=0}^{3} \binom{3}{k} x^{3-k} (2)^k \] The term containing \( x^2 \) corresponds to \( k = 1 \): \[ \binom{3}{1} x^{2} (2)^1 = 3 \times x^2 \times 2 = 6x^2 \] So, the coefficient of \( x^2 \) is **6**. --- **Question 3:** *It seems like your third question got cut off. Could you please provide the complete question so I can assist you effectively?* --- Feel free to ask if you have any more questions or need further clarification!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The binomial expansion, often articulated through the Binomial Theorem, became formally recognized in the early 17th century, although its roots trace back to ancient Indian mathematicians. Isaac Newton significantly advanced its study, applying it not just to integers but also to rational and negative exponents. This expansion is pivotal in combinatorics, allowing for calculations in probability, algebra, and even calculus! In the realm of everyday mathematics, the binomial expansion finds practical applications in fields ranging from finance to computer science! For instance, it can be utilized to calculate compound interest, model population growth, and represent complex functions in polynomial form. Understanding how to leverage this expansion effectively can resolve numerous real-world problems, making it an invaluable tool for students, engineers, and data scientists alike!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad