Find \( f+g, f-g, f g \) and \( \frac{f}{g} \). Determine the domain for each function. \( f(x)=4 x-5, g(x)=x-7 \) \( (f+g)(x)=\square \) (Simplify your answer.) What is the domain of \( f+g \) ? A. The domain of \( f+g \) is \( \{\square \). (Use a comma to separate answers as needed.) B. The domain of \( f+g \) is \( \square \). (Type your answer in interval notation.) ( \( f-g)(x)=\square \) (Simplify your answer.) What is the domain of \( f-g \) ? \( f+g \) is \( \varnothing \). A. The domain of \( f-g \) is \( \} \). (Use a comma to separate answers as needed.) B. The domain of \( f-g \) is \( \square \). (Type your answer in interval notation.) C. The domain of \( f-g \) is \( \varnothing \).
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find \( f+g, f-g, fg, \) and \( \frac{f}{g} \), we will start with the given functions \( f(x) = 4x - 5 \) and \( g(x) = x - 7 \). 1. \( (f + g)(x) = f(x) + g(x) = (4x - 5) + (x - 7) = 5x - 12 \) The domain of \( f + g \) is all real numbers since there are no restrictions. B. The domain of \( f + g \) is \( (-\infty, \infty) \). 2. \( (f - g)(x) = f(x) - g(x) = (4x - 5) - (x - 7) = 3x + 2 \) Similarly, the domain of \( f - g \) is also all real numbers. B. The domain of \( f - g \) is \( (-\infty, \infty) \). 3. \( (fg)(x) = f(x) \cdot g(x) = (4x - 5)(x - 7) = 4x^2 - 28x - 5x + 35 = 4x^2 - 33x + 35 \) Again, the domain of \( fg \) is all real numbers. B. The domain of \( fg \) is \( (-\infty, \infty) \). 4. \( \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{4x - 5}{x - 7} \) This function is undefined when \( g(x) = 0 \) (i.e., \( x = 7 \)). Therefore, the domain excludes this point. B. The domain of \( \frac{f}{g} \) is \( (-\infty, 7) \cup (7, \infty) \). Finally, we summarize the results: 1. \( (f+g)(x) = 5x - 12 \) with domain \( (-\infty, \infty) \). 2. \( (f-g)(x) = 3x + 2 \) with domain \( (-\infty, \infty) \). 3. \( (fg)(x) = 4x^2 - 33x + 35 \) with domain \( (-\infty, \infty) \). 4. \( \left( \frac{f}{g} \right)(x) = \frac{4x - 5}{x - 7} \) with domain \( (-\infty, 7) \cup (7, \infty) \).