Pregunta
upstudy study bank question image url

A function \( f(x) \) is a linear function and the function \( g(x)=f(x)+k \) .If the value of k is 4 , how does the graph of \( g(x) \) compare with the graph \( f(x) \) ?

Ask by Zimmerman Luna. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The graph of \( g(x) \) is the same straight line as \( f(x) \) but shifted upward by 4 units.

Solución

When dealing with linear functions, any modification involving the addition of a constant affects the graph in a specific way. Given: - **\( f(x) \)** is a linear function. Its graph is a straight line. - **\( g(x) = f(x) + k \)**, where \( k = 4 \). **Impact of Adding \( k \):** - Adding a constant \( k \) to \( f(x) \) results in a vertical shift of the graph. - Specifically, \( g(x) = f(x) + 4 \) shifts the entire graph of \( f(x) \) **upward** by 4 units. **Characteristics of the Transformation:** - **Slope**: The slope of \( f(x) \) and \( g(x) \) remains the same since the addition of a constant does not affect it. - **Y-Intercept**: The y-intercept of \( g(x) \) is 4 units higher than that of \( f(x) \). **Conclusion:** The graph of \( g(x) \) will be a straight line that is **parallel** to the graph of \( f(x) \), positioned **4 units above** it. **Visual Representation:** ``` f(x): g(x): | | | | | | --+------------+-- | | | | ``` *(Imagine the right line being exactly 4 units above the left one)* --- **Summary:** Adding 4 to the linear function \( f(x) \) shifts its graph upward by 4 units, resulting in a parallel line for \( g(x) \). **Answer:** Its graph is the same straight line shifted upward by four units, running parallel to f (x ).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

When you add a constant \( k \) to a linear function \( f(x) \), like in \( g(x) = f(x) + 4 \), it shifts the entire graph of \( f(x) \) vertically upward by 4 units. So, if a point on the graph of \( f(x) \) was at (x, y), the corresponding point on the graph of \( g(x) \) will be at (x, y + 4). This means that every point moves up while the slope of the line remains unchanged, keeping the linearity intact! This transformation preserves not only the slope but also the x-intercepts. That means, if the function \( f(x) \) crossed the x-axis at some point, the function \( g(x) \) will cross the x-axis higher, creating a parallel line that retains its original angle but rises to a new height. So, in essence, think of \( g(x) \) as the jubilant sibling of \( f(x) \), just elevated by 4 units!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad