15. \( \left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)+\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)=\left(\begin{array}{ll}2 & \square \\ 4 & 5\end{array}\right) \) A. 1 B. 2 C. 3 D. 4 E. 5 16. \( \left(\begin{array}{ll}\square & 5 \\ 3 & 2\end{array}\right)+\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right)=\left(\begin{array}{ll}4 & 6 \\ 3 & 4\end{array}\right) \) A. 1 B. 2 C. 4 D. 6 17. \( \left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right)+\left(\begin{array}{ll}3 & 1 \\ 2 & 5\end{array}\right)=\left(\begin{array}{ll}4 & 2 \\ 4 & \square\end{array}\right) \) A. 2 B. 3 C. 4 D. 5 \[ \left(\begin{array}{ll} 2 & 4 \\ 3 & 2 \end{array}\right)+\left(\begin{array}{ll} 8 & 5 \\ 3 & \square \end{array}\right)=\left(\begin{array}{rr} 10 & 9 \\ 6 & 11 \end{array}\right) \] A. 5 B. 6 C. 8 D. 9
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
When you add matrices, you simply add corresponding elements together. So, for the first problem, you can find the square by noticing that \(2 + 1 = \square\), which leads you to the answer of 3. Similarly, in the second matrix equation, just look at the top right corner: \(5 + 1 = 6\). Easy peasy! To spice things up, remember that matrix operations are heavily used in computer graphics, physics simulations, and even in machine learning algorithms. They provide a powerful way to manipulate and transform data! Understanding how to work with matrices can open up a treasure chest of opportunities in various tech and science fields.