Pregunta
7. Find the coordinates of the hole of \( f(x)=\frac{(x+4)(x-2)}{(x-2)(x-1)} \)
Ask by Mccoy Lynch. in the United States
Jan 22,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The hole is at the point (2, 6).
Solución
To find the coordinates of the hole for the function:
\[ f(x) = \frac{(x+4)(x-2)}{(x-2)(x-1)} \]
**Step 1: Simplify the Function**
Notice that the factor \((x-2)\) appears in both the numerator and the denominator. We can simplify the function by canceling this common factor:
\[ f(x) = \frac{(x+4)\cancel{(x-2)}}{\cancel{(x-2)}(x-1)} = \frac{x + 4}{x - 1} \quad \text{(for } x \neq 2 \text{)} \]
**Step 2: Identify the Hole**
A hole occurs at the \(x\)-value that makes the canceled factor zero. In this case, the canceled factor is \((x - 2)\), so:
\[ x = 2 \]
**Step 3: Find the \(y\)-Coordinate of the Hole**
To find the corresponding \(y\)-value, substitute \(x = 2\) into the simplified function:
\[ f(2) = \frac{2 + 4}{2 - 1} = \frac{6}{1} = 6 \]
**Conclusion**
The hole of the function is located at the point \((2, 6)\).
**Answer:**
After simplifying, the hole is at the point with coordinates ( 2, 6 ).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To find the coordinates of the hole in the function \( f(x) = \frac{(x+4)(x-2)}{(x-2)(x-1)} \), we first simplify the expression. The factor \( (x-2) \) appears in both the numerator and the denominator, indicating that there is a hole at \( x = 2 \). To find the y-coordinate of the hole, we simplify the function to \( f(x) = \frac{(x+4)}{(x-1)} \) and then substitute \( x = 2 \): \( f(2) = \frac{(2+4)}{(2-1)} = \frac{6}{1} = 6 \). Thus, the coordinates of the hole are \( (2, 6) \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium