Pregunta
Which of the following correctly identifies the transformation of \( f(x)=\log _{5}(x+7) \) from its parent function? (1 point) vertical shift down 7 units horizontal shift left 7 units vertical shift up 7 units horizontal shift right 7 units
Ask by Cummings King. in the United States
Feb 04,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The function \( f(x) = \log_5(x + 7) \) is a horizontal shift left by 7 units.
Solución
The function \( f(x) = \log_5(x + 7) \) represents a horizontal shift of the parent logarithmic function \( \log_5(x) \).
In general, for a logarithmic function \( \log_b(x - h) \), the graph is shifted horizontally:
- If \( h \) is positive, the shift is to the right.
- If \( h \) is negative, the shift is to the left.
In this case, \( f(x) = \log_5(x + 7) \) can be rewritten as \( \log_5(x - (-7)) \), indicating a horizontal shift **left** by 7 units.
**Answer:**
A horizontal shift left 7 units
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
The function \( f(x) = \log_{5}(x + 7) \) is a transformation of the parent function \( \log_{5}(x) \). The expression \( (x + 7) \) indicates a shift in the input of the function, which means the graph has been moved horizontally. Specifically, since we are adding 7 to \( x \), this results in a horizontal shift to the left by 7 units. So, the correct answer is: horizontal shift left 7 units!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium