Pregunta
upstudy study bank question image url

\( \$ 600 \) were deposited into an account wit a \( 5 \% \) interest rate, compounded continuously. How many years was it in the bank if the current amount is \( \$ 6000 \) ? \[ t=[?] \text { years } \] Round to the nearest year.

Ask by Murray Pearson. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The account was in the bank for approximately 46 years.

Solución

To solve this problem, we can use the formula for continuous compounding of interest: \[ A = P e^{rt} \] where: - \( A \) is the current amount in the account, - \( P \) is the initial deposit, - \( r \) is the interest rate, - \( t \) is the time in years. Given: - Initial deposit \( P = \$600 \), - Interest rate \( r = 5\% = 0.05 \), - Current amount \( A = \$6000 \). We need to find the time \( t \) in years. Substitute the given values into the formula: \[ 6000 = 600 e^{0.05t} \] Now, we can solve for \( t \) using the formula: \[ t = \frac{\ln\left(\frac{6000}{600}\right)}{0.05} \] Let's calculate the value of \( t \) using the formula. Calculate the value by following steps: - step0: Calculate: \(\frac{\ln{\left(\frac{6000}{600}\right)}}{0.05}\) - step1: Divide the terms: \(\frac{\ln{\left(10\right)}}{0.05}\) - step2: Rewrite the expression: \(\frac{\ln{\left(10\right)}}{\frac{1}{20}}\) - step3: Multiply by the reciprocal: \(\ln{\left(10\right)}\times 20\) - step4: Reorder the terms: \(20\ln{\left(10\right)}\) The time \( t \) in years is approximately 46.05 years. Therefore, the account was in the bank for approximately 46 years.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the time \( t \) for continuous compounding, you can use the formula: \[ A = Pe^{rt} \] where \( A \) is the amount of money accumulated after time \( t \), \( P \) is the principal amount (the initial money), \( r \) is the rate of interest, and \( e \) is Euler's number (approximately \( 2.71828 \)). In your case, \( A = 6000 \), \( P = 600 \), and \( r = 0.05 \). Plugging in these values, we have: \[ 6000 = 600 e^{0.05t} \] Dividing both sides by 600 gives: \[ 10 = e^{0.05t} \] Taking the natural logarithm of both sides: \[ \ln(10) = 0.05t \] Now, solve for \( t \): \[ t = \frac{\ln(10)}{0.05} \approx \frac{2.3026}{0.05} \approx 46.052 \] Rounding to the nearest year, \( t \approx 46 \text{ years} \). So, the answer is: \( t = [46] \text{ years} \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad