Pregunta
upstudy study bank question image url

Write an equation for a line passing through the point \( (3,-2) \) that is parallel to the line \( 3 x+4 y=5 \). Then write a second equation for a line passing through the point \( (3,-2) \) that is perpendicular to the line \( 3 x+4 y=5 \). The equation of the parallel line is \( y=-\frac{3}{4} x+\frac{1}{4} \). (Simplify your answer. Type your answer in slope-intercept form. Use integers or fractions for any numbers in the expression.) The equation of the perpendicular line is (Simplify your answer. Type your answer in slope-intercept form. Use integers or fractions for any numbers in the expression.)

Ask by Clarke Pritchard. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation of the perpendicular line is \( y = \frac{4}{3}x - 6 \).

Solución

To find the equations of the lines as specified, let's follow the steps below: ### 1. Parallel Line You've already correctly found the equation of the parallel line passing through the point \( (3, -2) \): \[ y = -\frac{3}{4}x + \frac{1}{4} \] ### 2. Perpendicular Line To find the equation of the line perpendicular to \( 3x + 4y = 5 \) and passing through \( (3, -2) \), follow these steps: 1. **Find the slope of the original line:** Rewrite \( 3x + 4y = 5 \) in slope-intercept form (\( y = mx + b \)): \[ 4y = -3x + 5 \implies y = -\frac{3}{4}x + \frac{5}{4} \] So, the slope (\( m_1 \)) of the original line is \( -\frac{3}{4} \). 2. **Determine the slope of the perpendicular line:** The slope of a line perpendicular to the original line is the negative reciprocal of \( m_1 \): \[ m_2 = \frac{4}{3} \] 3. **Use the point-slope form to find the equation:** Using the point \( (3, -2) \) and the slope \( m_2 = \frac{4}{3} \): \[ y - (-2) = \frac{4}{3}(x - 3) \] Simplify: \[ y + 2 = \frac{4}{3}x - 4 \implies y = \frac{4}{3}x - 6 \] ### Final Answer - **Equation of the parallel line:** \[ y = -\frac{3}{4}x + \frac{1}{4} \] - **Equation of the perpendicular line:** \[ y = \frac{4}{3}x - 6 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the equation of the line that is parallel to \(3x + 4y = 5\) and passes through the point \((3, -2)\), first, we need the slope of the given line. Rewriting it in slope-intercept form gives us \(y = -\frac{3}{4}x + \frac{5}{4}\), so the slope is \(-\frac{3}{4}\). Thus, the equation of the parallel line passing through \((3, -2)\) can be expressed as: \[ y - (-2) = -\frac{3}{4}(x - 3) \] Simplifying this leads to: \[ y + 2 = -\frac{3}{4}x + \frac{9}{4} \] \[ y = -\frac{3}{4}x + \frac{1}{4} \] Next, for the line that is perpendicular to \(3x + 4y = 5\), the slope will be the negative reciprocal of the original slope. The slope of the original line is \(-\frac{3}{4}\), thus the perpendicular slope is \(\frac{4}{3}\). Using the point \((3, -2)\), the equation for the perpendicular line is: \[ y - (-2) = \frac{4}{3}(x - 3) \] Simplifying this gives: \[ y + 2 = \frac{4}{3}x - 4 \] \[ y = \frac{4}{3}x - 6 \] So, the equation of the perpendicular line is: \[ y = \frac{4}{3}x - 6 \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad