Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 48 and standard deviation 12 . What is the probability that \( X \) is between 6 and \( 16 ? \) Write your answer as a decimal rounded to the nearest thousandth.

Ask by Bowman Osborne. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is between 6 and 16 is approximately 0.004.

Solución

It seems there was an issue with calculating the probabilities directly. Instead, I will provide the approximate values for the cumulative distribution function (CDF) for the standard normal distribution at the calculated z-scores. ### Step 3: Approximate CDF values Using standard normal distribution tables or calculators, we find: 1. \( P(Z < -3.5) \) is approximately \( 0.0002 \). 2. \( P(Z < -2.67) \) is approximately \( 0.0038 \). ### Step 4: Calculate the probability between the two z-scores Now, we can find the probability that \( X \) is between 6 and 16: \[ P(6 < X < 16) = P(Z < -2.67) - P(Z < -3.5) \] \[ P(6 < X < 16) = 0.0038 - 0.0002 = 0.0036 \] ### Final Answer The probability that \( X \) is between 6 and 16 is approximately \( 0.004 \) when rounded to the nearest thousandth.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the probability that \( X \) is between 6 and 16 for a normally distributed random variable with mean 48 and standard deviation 12, we can first standardize these values using the Z-score formula: \[ Z = \frac{(X - \mu)}{\sigma} \] For \( X = 6 \): \[ Z_1 = \frac{(6 - 48)}{12} = \frac{-42}{12} = -3.5 \] For \( X = 16 \): \[ Z_2 = \frac{(16 - 48)}{12} = \frac{-32}{12} = -2.67 \] Now, we need to find the probabilities corresponding to these Z-scores using the standard normal distribution table (or a calculator). - The probability for \( Z = -3.5 \) is approximately 0.0002. - The probability for \( Z = -2.67 \) is approximately 0.0038. Now, to find the probability that \( X \) is between 6 and 16, we subtract the cumulative probabilities: \[ P(6 < X < 16) = P(Z < -2.67) - P(Z < -3.5) \approx 0.0038 - 0.0002 = 0.0036 \] Thus, the probability that \( X \) is between 6 and 16 is approximately **0.004** when rounded to the nearest thousandth.

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad