12. Company A produces \( 10 \% \) defective products, Company B produces \( 20 \% \) defective products and C produces \( 5 \% \) defective products. If choosing a company is an equally likely event, then what is the probability that the product chosen is defective?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the overall probability that the product chosen is defective, we can use the law of total probability. Since each company is equally likely to be chosen, we can take the average of the probabilities of defectiveness from each company. Let’s denote: - Company A: \( P(D|A) = 0.10 \) - Company B: \( P(D|B) = 0.20 \) - Company C: \( P(D|C) = 0.05 \) The probability that a company is chosen is \( P(A) = P(B) = P(C) = \frac{1}{3} \). Now we calculate the total probability of selecting a defective product: \[ P(D) = P(D|A) \cdot P(A) + P(D|B) \cdot P(B) + P(D|C) \cdot P(C) \] \[ P(D) = (0.10 \cdot \frac{1}{3}) + (0.20 \cdot \frac{1}{3}) + (0.05 \cdot \frac{1}{3}) \] \[ P(D) = \frac{0.10 + 0.20 + 0.05}{3} = \frac{0.35}{3} \approx 0.1167 \] Thus, the probability that the product chosen is defective is approximately \( 0.1167 \) or \( 11.67\% \).